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I remember perfectly well how it was that I stopped painting. One evening, after I had

been for eight hours on end in my studio, painting for five or ten minutes at a time

and then throwing myself down on the divan and lying there flat, staring up at the

ceiling, for an hour or two – all of a sudden, as though at last, after so many feeble

attempts, I had had a genuine inspiration, I stubbed out my last cigarette in an ashtray

already full of dead cigarette-ends, leapt cat-like from the armchair into which I had

sunk, seized hold of a small palette-knife which I sometimes use for scraping off colours

and slashed repeatedly at the canvas on which I had been painting, not content until

I had reduced it to ribbons. Then from a corner of the room I took a blank canvas

of the same size, threw away the torn canvas and placed the new one on the easel.

Immediately afterwards, however, I realised that the whole of my – shall I say creative?

– energy had been vented completely in my furious, and fundamentally rational, gesture

of destruction. I had been working on that canvas for the last two months, doggedly

and without pause; slashing it to ribbons with a knife was equivalent, fundamentally,

to finishing it – in a negative manner, perhaps, as regards external results, which in

any case had little interest for me, but positively, in relation to my own inspiration. In

point of fact, my destruction of the canvas meant that I had reached the conclusion of

a long discourse which I had been holding with myself for goodness knows how long.

It meant that I had at last planted my foot on solid ground. And so the empty canvas

that now stood on the easel was not just an ordinary canvas which had not yet been

used; it was a particular canvas that I had placed on the easel at the termination of

a long job of work. In effect, I thought, seeking to console myself against the sense of

catastrophe that was throttling me, this canvas, similar in appearance to so many other

canvases but for me fraught with meaning and consequence, could be the starting-point

from which I could now begin all over again, in complete freedom; just as if those ten

years of painting had not gone by and I myself were still twenty-six, as I was when

I had left my mother’s house and had gone to live in the studio in Via Margutta, in

order to devote myself, in complete leisure, to painting. However, on the other hand, it

might well be – in fact, it was highly probable – that the empty canvas now flaunting

itself on the easel was the outward sign of a development no less intimate and no less

necessary but entirely negative, a development which might lead me, by imperceptible

stages, to complete impotence. And that this second hypothesis might well be the true

one appeared to be borne out by the fact that slowly but surely boredom had come to

be the companion of my work during the last six months, until finally it had brought

it to a full stop on that afternoon when I slashed my canvas to tatters ...

Alberto Moravia, The Empty Canvas, 1961
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abstract
the application of feed forward neural networks (ffnn) to tasks involving high-

dimensional data has always presented problems which emanate from the simple fact

that these networks can not be scaled up unreservedly without serious side effects.

Gradient descent optimisation methods, independently of how well they perform

in lower dimensions, will reach their limitations as soon as the search space reaches a

critical dimension. For certain kernels and training data, this should be expected to

happen sooner rather than later because the volume of this space grows exponentially

with the number of input variables – something also known as curse of dimensionality.

For complex problems, the optimisation process may be hindered further by the appear-

ance of numerous local minima due to the increased complexity and multi-modality of

the error surface. In addition, neurons saturate and lose sensitivity when an excessively

high input signal is received. This results in information being blocked and training

impeded.

Parallelisation of ffnn proves extremely difficult in practice due to the exuberant

communication overheads. This problem, which relates to the fine rather than coarse-

grain parallelism inherent in the ffnn topology, removes virtually any possibility for

efficient parallel distributed processing. The prospect of winning over the curse of

dimensionality remains, largely, utopian.

In this thesis, a methodology for replacing the monolithic ffnn with an entity of sim-

pler and smaller ffnn units is proposed. Our motivation stems from the inability of

the single ffnn to deal effectively with all the problems mentioned above. Further-

more, although existing neural network models, be they modular or monolithic, are

relatively successful in addressing issues of generalisation, specialisation and confidence

of prediction, the problems associated with high-dimensional data and scaling remain

basically unanswered. The thesis that the brain is not only characterised by a massively

connected network of neurons but also by the existence of different computational sys-

tems operating at different levels of abstraction and specialising at different functions

is by itself a right justification to replace the single ffnn with the entities. The claim

here is that the use of the entities not only eliminates the aforementioned scaling prob-

lems, hence, allowing for network implementations with, virtually, no size restrictions,

but also improves generalisation ability and training consistency, favours a coarse-grain

parallelisation of the training process and promotes a computational model which can

be studied with an arbitrary level of abstraction.

The concept of neural network decomposition is materialised with the construction of

three different ffnn entity models, namely, classes 1, 2 and 3. A mathematical proof

that these models are universal function approximators is accomplished with the aid

of the Stone-Weierstrass theorem.

Finally, the generalisation ability and training consistency of the entities as well as

time benefits obtained by parallelising their training procedure, are assessed in practice.

These empirical results support the claims about the benefits obtained from the use of

the entities and the thesis that they can safely replace single ffnn in applications of

prohibitevely high dimensionality.
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chapter I

introduction

1.1 Motivations

Feed forward neural networks (ffnn) are mathematical techniques based on connection-

ist principles and used in the approximation of general mappings from one finite dimen-

sional space to another. They also present a practical application of the theoretical res-

olution of Hilbert’s 13th problem by Kolmogorov, [Kolmogorov, 1957], and Lorenz, and

have been used with success in a variety of applications ranging from pattern recogni-

tion, [Bishop, 1995], to earthquake prediction, [Hadjiprocopis et al., 1994], from med-

ical prognosis and survival prediction, [Ohno-Machado and Musen, 1996], to financial

forecasting, [Gately, 1996].

The successful utilisation of feed forward neural networks in problems of extremely

high dimensionality naturally calls for larger implementations. However, traditional

neural networks can not be expanded indefinitely because scaling problems arise as a

direct result of the curse of dimensionality – the exponential growth of the volume of

Euclidean space as its dimensions increase.

The existing training algorithms for multi-layer perceptrons – all, one way or another,

descendants of hill climbing and gradient descent – are unable to handle the size of the

vast weight search space. They are hindered further by the appearance of innumerable

local minima due to the multi-modality and complexity of the error surface.

In addition, premature neuron saturation, [Burrows and Niranjan, 1993], occurring at

the output of the hidden layer nodes due to the presence of an excessively high in-

put signal, causes neurons to lose their sensitivity – the propagation of information is

severely blocked.

The focus of this work was on establishing a methodology for creating large neural

networks which are immune to the curse of dimensionality and the other problems which

1



2 chapter i

plague traditional architectures. Our efforts were constrained by the requirements

outlined below. The new architecture must:

i. possess the universal function approximation property. This will ensure that,

at least theoretically, such a network can approximate arbitrarily well any real,

continuous function,

ii. be able to scale up unreservedly and without any side effects on performance,

iii. have a structure which favours efficient parallelisation of the training process and

feasible hardware implementation,

iv. derive from connectionist principles.

The motivation behind substituting a monolithic architecture (and, specifically, the

traditional ffnn model) with an equivalent modular neural network and, in particular,

the proposed entities methodology, emanates from the following facts and observations:

i. Partitioning a task into smaller sub-tasks is a very good way to reduce complexity

without compromising the fitness of the solution. Similarly, breaking a huge and

complicated structure (such as a solid neural network) into an entity of smaller

structures (the modular network) will most definitely reduce the complexity of

the whole system.

ii. A taxonomy of the components of neural network architectures may be defined in

which the neuron is the finest level of classification, a layer is a coarser level and

a network is a still coarser level. Solid neural networks (e.g. ffnn) are typically

designed to be modular only at the neuronal level.

iii. The brain is not only characterised by a massively connected network of neurons

but also by the existence of different computational systems operating at different

levels of abstraction and specialising in different functions:

“ ... the brain is composed of many different parallel, distributed sys-

tems, performing well defined functions [...] To address the issue of scal-

ing, we may need to learn how to combine small networks and to place

them under the control of other networks.” [Freeman, 1991, pp.29-30]

Although the above statement does not deny the main connectionist princi-

ple of the simplicity of the basic building element (the neuron in our case), it

does recognise the need for somehow organising these elements into various enti-

ties/modules/blocks which should exist and operate at different levels of abstrac-

tions and specialising in different functions.



1.2. CONTRIBUTION 3

So, with Connectionism as our point of departure, we set about to develop a framework

for constructing a system which is characterised by diversity in representation, level of

abstraction and functionality of its constituent elements. These elements are all based

on the neuron and taking into consideration the taxonomy described in (ii), above.

The end result was reached by applying the same fundamental principles of distributed

processing and knowledge representation used in the development of a ffnn, on building

blocks of a much more composite character than that of the neuron. Thus, arriving

to the concept of feed forward neural network entities: a system of processing units of

arbitrary complexity, linked via connections of adjustable strength and optimised using

common gradient descent methods.

1.2 Contribution

Two questions must be answered by the author of a thesis:

• what is novel in this work ?

• what is useful about this work ?

These questions are briefly answered here and, at greater length, in the body of this

thesis.

1.2.1 Entities of feed forward neural networks: the model

Connectionism promotes a model of computation based on emergence; a principle

which claims that complex organisational structures can arise from the agglomeration

of simple units which do not individually exhibit any of the properties of the system as

a whole.

The behaviour of a connectionist system is determined by independent, local processes

in the hope that they will produce the higher level tasks required. Thus, just like an

ant colony or a society of bees, the potential of a connectionist system is expected to

exceed the mere sum of the potential of its parts.

Feed forward neural networks utilise in full these principles and, indeed, have a long

record of successful applications to problems where statistical methods or traditional

AI techniques have not been doing so well1.

Entities of feed forward neural networks arise from the direct extension of these con-

nectionist principles. However, the building block of the system is not the neuron but

1 For example, in pattern recognition and optical character recognition.
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the single ffnn instead. By analogy, more complex entities may be constructed by

connecting other, less complex, entities together.

1.2.2 The utility of the model

An entity of ffnn can be scaled up, to deal with data of extremely high dimensions,

with, virtually, no restrictions; new ffnn units can be added to the entity to absorb the

new inputs without encountering the scaling problems, which haunt the single ffnn,

at least not to the same extent. Thus, problems which involve high-dimensional data,

such as those in the fields of finance and meteorology, may now be tackled without

resorting to dimensionality reduction techniques.

Secondly, the concept of the entities may be used not only to connect single ffnn

together but also other entities. What is more, the connectivity and training method-

ology of the entities remains largely independent of the type of their elements. The

significance of this last point is that the same basic connectivity schemes and training

methods may be used with any entity and independently of the nature and type of its

building blocks.

Thirdly, the entities’ structure promotes coarse-grain parallelism. This is a feature

which favours efficient parallelisation since the main problem which plagued many par-

allel implementations of single ffnn was the excessive communication overheads arising

from the fine-grain model of parallelism they featured. More importantly, the com-

munication needs of a neural network determine its successful and efficient hardware

implementation. In this respect, the engineering problems associated with transferring

an entity to silicon are much reduced compared to those of the single ffnn.

Fourthly, the idea of constructing an entity with blocks of arbitrary type and size

promotes a model of computation which can be studied with an arbitrary level of

abstraction.

1.2.3 Published work

This research work has yielded four publications:

1. [Hadjiprocopis and Smith, 1998]

2. [Hadjiprocopis and Smith, 1997b]

3. [Hadjiprocopis and Smith, 1997a]

4. [Hadjiprocopis et al., 1994]
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1.3 Structure of the thesis

The next chapter outlines the main weaknesses of the symbolic approach to Artifi-

cial Intelligence and examines how this approach is complemented by the diametrically

opposite connectionist principles and philosophy. A brief historical note on Connec-

tionism, Hebbian learning and neural networks, in general, is also included.

Chapter 3 serves as a guide to feed forward neural networks. It includes a formal mathe-

matical description of these networks, their operation and a reference to their universal

function approximation capabilities. A proof that ffnn can approximate arbitrarily

well any real continuous function is included in appendix D on page 181. Finally, a

brief introduction to gradient-descent optimisation techniques and, in particular to

the back-propagation method is given. More details on back-propagation, including

derivation and formalism, appendix A on page 169.

Chapter 4 contains a critique of feed forward neural networks as far as issues of compu-

tational complexity, optimisation and scaling problems, parallelism and hardware

implementation are concerned. Appendix C on page 175 contains a theoretical frame-

work of learning including references to Probably Approximately Correct learning and

the Vapnik-Chervonenkis dimension which, we feel, will be useful for any future work

dealing with the derivation of worst-case generalisation bounds for the entities.

Chapter 5 deals with the concept of ffnn entities. After a statement of motivation and

a review of the current state of the art in modular neural network architectures and

ensemble methods, a formal description of constructing and training the entity classes

1, 2 and 3 entities is given. This is followed by a proof that ffnn entities are universal

function approximators along the lines of the Stone-Weierstrass theorem (part of ap-

pendix D on page 181 contains a description of this important theorem). Section 5.4.6

on page 64 contains a derivation of the expressions for the partial derivatives of a ffnn

with respect to its input vector. These derivatives are used to generalise the back-

propagation algorithm in order to optimise not only the connections between neurons

(i.e. within a single ffnn) but also connections between any feed forward computing

element, be it a single ffnn, an entity, an entity of entities and so on.

Finally, as proof of concept, chapter 6 contains the results of experiments carried out in

order to assess the generalisation ability and training times of the three entity classes

and compare them to those of the single ffnn. Also, this chapter contains a demon-

stration of the ease with which an entity’s training process can be parallelised and dis-

tributed among different processors in a very efficient fashion. Appendix F on page 191
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contains a reference to the npnp script language2 in which all simulations and test pro-

grams were written. Appendix G on page 223 contains all the scripts written for the

purposes of obtaining these empirical results.

In conclusion, chapter 7 recapitulates on the requirements for this work and assesses the

degree to which they were met. It also suggests possible directions for future research.

2 npnp is a scripting language which was specifically designed for the purposes of integrating ffnn

code. This consists of constructing, training and testing single ffnn and entities.



chapter II

connectionism

Martyrs of the dark ages, partisans of a neural ideology, prophets of a
neural religion: they preach neural knowledge, baptise and admit mor-
tals into the depth of neural apocrypha . . .

2.1 Connectionism: raison d’être

2.1.1 Symbolic AI

Artificial intelligence (AI) is concerned with how to make machines behave in an

intelligent manner. The most popular approach to AI for most of its (early) history has

been the thesis that a machine which produces an evolving collection of unambiguous

symbol tokens and manipulates them according to precise rules. What Simon and

Newell, [Newell, 1980], call the Physical Symbol System is the necessary and sufficient

means for general intelligence of the kind exhibited by humans.

Soon it became clear in the minds of the people pursuing this kind of intelligence that

machines based on the Physical Symbol System hypothesis were too rigid and inflexible

to function well outside the domains for which they were built. Paradoxically, today

there are so many systems and machines that can compete with experts (e.g. expert

systems applied to medicine) or highly trained workers (e.g. robots manufacturing

automobiles or electronic boards) but none are capable of functioning as a shop assistant

or solving puzzles that even a child can.

2.1.2 What is wrong with symbols?

On the one hand, knowledge representation and encoding based on unambiguous sym-

bols and structures such as frames [Minsky, 1975], schemata [Rumelhart, 1975] and

scripts [Schank, 1976], provide successful means for storing information but fail to al-

low for interaction between the fragments of knowledge they represent:

7
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“ . . . any theory that tries to account for human knowledge using script-like

knowledge structures will have to allow them to interact with each other

to capture the generative capacity of human understanding in novel situa-

tions. Achieving such interactions has been one of the greatest difficulties

associated with implementing models that really think generatively using

script- or frame-like representations.” [McClelland et al., 1986, p.9]

On the other hand, machines operating on the symbol-oriented principle require the

knowledge of the rules that apply precisely in the world where they are trying to

operate in1. This is fairly straight-forward within small and isolated domains, but

when we move to the real world and deal with problems without formally bounded

domains, we find that not only it is difficult and even impossible to encode the many

exceptions to our rules, but also that the number of these rules grows so large that the

method soon proves to be computationally intractable causing processing bottlenecks

and finally failure.

Rule-based systems, no matter how good they are in their restricted domains, simply

can not deal with tasks which are not specified in precise, mathematically tractable ways

and, generally, require the simultaneous consideration of many pieces of information

which may be ambiguous, inconsistent and incomplete:

“ These models have rules which reliably work – so long as we stay in that

special domain . . . Inside such simple ‘toy’ domains, a rule may seem to

be quite ‘general’ but whenever we broaden those domains, we find more

and more exceptions – and the early advantage of context-free rules then

mutates into strong limitations.” [Minsky, 1990]

2.1.3 Reductionism versus Emergence

Premised on the principle that understanding a complex object requires to break it

into component parts which are examined individually and then the results of these

examinations are added together, Reductionism is a keystone of the Scientific Method:

“ . . . to divide each problem I examined into as many parts as was feasible,

and as was requisite for its better solution . . . to direct my thoughts in an

orderly way; beginning with the simplest objects, those most apt to be

known, and ascending little by little, in steps as it were, to the knowledge

1 The marriage of fuzzy logic with the symbol-oriented principle was a first step towards dealing

with the weaknesses of rule-based systems.
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of the most complex; and establishing an order in thought even when the

objects had no natural priority one to another.” [Descartes, 1637]

The symbolic approach to AI is fundamentally based on reductionist principles. It

looks at things top-down and develops its strategies within this analytical2 framework:

at the beginning, it assumes an outline of the tasks to be accomplished and, later,

detail and function are added. Finally, problems encountered during the execution of

these tasks are dealt with by breaking down the original tasks. In effect, “intelligence”

is centralised not only because everything has to operate according to a “master plan”

but, more importantly, because the responsibility for devising and implementing such

a plan is solely assumed by a supreme authority, a final arbiter, a homunculus who

puts all the inputs together: the central processor.

Emergence, on the other hand, claims that interesting and complex organisational

models can arise from the agglomeration of simple units which do not individually

exhibit any of the properties of the model as a whole. This may be achieved by imple-

menting low level functions in the hope that, by some kind of alchemical magic, they

will produce the higher level tasks required.

Emergence not only constitutes a political statement, a kind of nihilist doctrine which

explicitly rejects authoritarian power structures (e.g. reductionism’s central control)

for the sake of distributed control, but also demolishes fundamental assumptions which

have bolstered scientific thought for hundreds of years:

“ If the properties of matter and energy at any given level of organisation

can not be explained by the properties of the underlying levels, it follows

that biology can not be reduced to physics or anthropology to biology.”

[Landa, 1992]

This emergent, bottom-up or synthesis3 methodology was given the name of Con-

nectionism and, since its genesis, has been challenging the hegemony of “good old-

fashioned” AI.

2.2 Historical

Nowadays, as the limitations of single processor, von Neumann architectures are be-

coming obvious, it is a widespread belief that further development of science and

2 From the Greek word αναλὺϵιν; to break, to untie, to undo.
3 From the Greek word συνθϵ̀τϵιν; to put together.
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technology will depend on establishing alternative computational models which will

overcome these difficulties. Several attempts are being made, for example: molecular

computing, quantum computing, DNA computing and neural computing.

In the 1940’s, in a similar quest for alternative computational methods, a joint ef-

fort of biology, cognitive studies and engineering had laid down the foundations of

connectionism.

In 1943, McCulloch and Pitts [McCulloch and Pitts, 1943] proposed a model for a

nerve cell using a threshold device4. They showed that such a collection of artificial

neurons5 was capable of calculating certain logical functions.

In 1949, Donald Hebb [Hebb, 1949] pointed the significance of the connections be-

tween synapses in the process of learning and developed a very basic learning rule:

the synaptic strength between two neurons is increased if both cells are activated at

the same time. His findings were directly related to the behaviorist and association-

ist points of view, both of which had formed prominent traditions in the history of

psychology. Associationism in particular is at least as old as Aristotle who proposed a

linkage mechanism between memories effected by temporal succession or by “something

similar, or opposite or neighbouring”, [Anderson and Rosenfeld, 1988].

Hebb was probably inspired by an experiment conducted by Ivan Pavlov. Following

the observation that dogs naturally salivate when they see food, Pavlov was ringing a

bell whenever he was feeding his dogs. After some time, he observed that the sound of

the bell alone was enough to make the dogs salivate. A possible explanation is that a

part of the dog’s brain, F, becomes active when food is seen and, in turn, stimulates S,

the part responsible for producing saliva. At the same time, another part of the brain,

B, is activated by the sounds of a bell. Because S and B are active at the same time,

the synaptic strength between them is reinforced and, hence, the influence of B on S’s

activity increases. If this practice continues for some time, B’s activity alone will be

enough to activate S: the dog salivates with a stimulus other than food, e.g. the sounds

of a bell!

Of course, this theory does not exclude the possibility that the synaptic strength

between F and S is increased too and, as a result, the dog, will experience hallucinations

of food images induced by the sounds of the bell!

4 A device with a binary output whose state depends on whether the sum of its inputs is above or

below a predefined threshold level.
5 McCulloch and Pitts have also introduced this neuro-euphemistic nomenclature which has, ever

since, never ceased to create controversy and passion within the circles of academia due to its certain

rhetorical appeal.
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In 1958, F. Rosenblatt [Rosenblatt, 1962], putting together the ideas of Hebb, McCul-

loch and Pitts, described the first operational neural network model, the Perceptron.

He further demonstrated the ability of perceptrons to calculate logical functions by

arranging the neurons in a particular topology and modifying the synaptic connections

appropriately. Following this initial success, many wild claims were made by Rosenblatt

and others about the potential of perceptrons as all-powerful learning devices.

X1 X2

Y

(a)

X1 X2

Y

(b)

Figure 2.1: These are two basic three-layer neural network configurations which can

memorise the xor truth table

The massive enthusiasm driven by delirious journalists and ambitious scientists did not

last long. In 1969, Marvin Minsky and Seymour Papert brought to light the limita-

tions of the perceptron6. Their book, entitled Perceptrons [Minsky and Papert, 1969],

was a neat hatchet job by the leaders of the symbolic-oriented community of AI on

the connectionist school, and an excessively pessimistic one too. Further research in

6 By perceptron (also two-layer perceptron as opposed to multi-layer perceptron) we shall mean a

neural network consisting of a single threshold output unit connected to the input layer via a single

layer of modifiable connections.
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connectionist systems and neural networks was then characterised as sterile and as a

result almost every activity in the field paused for fifteen years and scientists found it

almost impossible to receive funding.

Their critique was unjustifiably cruel because it was mainly based on the inadequacy of

the two-layer perceptron to solve the xor problem7, a classical problem of linear insep-

arability. It was known, even then, that this problem could be solved by incorporating

another layer of computational units to the two-layer model and adding non-linearities

at the output of the neurons. Although a learning rule for the multi-layer perceptron

had not yet been discovered, Minsky and Papert conjectured that such a rule would

be impractical, in principle, due to the combinatorial complexity of the calculations

involved. Today, we know, that combinatorial complexity becomes an obstacle when

the number of adjustable network parameters becomes very large; in fact four or five

orders of magnitude larger than the mere six weights8 required by a basic three-layer

neural network (see for example figures 2.1(a) and 2.1(b)) which successfully solves the

xor problem.

Despite the fact that Minsky and Papert made some points which were impartial and,

later, proved to be true, e.g. scaling problems9, years later, Seymour Papert had

admitted that their reasons for writing Perceptrons had not been entirely scientific –

there was some other secret agenda:

“ Once upon a time two daughter sciences were born to the new science

of cybernetics. One sister was natural, with features inherited from the

study of the brain, from the way nature does things. The other was ar-

tificial, related from the beginning to the use of computers. Each of the

sister sciences tried to build models of intelligence, but from very different

materials. The natural sister built models (called neural networks) out of

mathematically purified neurons. The artificial sister built her models out

of computer programs.

In their first bloom of youth the two were equally successful and equally

pursued by suitors from other fields of knowledge. They got on very

7 The xor problem involves learning a propositional logic relation like A or B but not both.
8 E.g. a fully connected network of two inputs, two hidden units and one output. Alternatively, if

direct connections from the input layer to the output layer units are permitted, the xor truth table

can be learned by a three layer network with four units and five weights (two units in the input layer

and one unit in the hidden and output layers. The units of the input layer are connected to the hidden

unit as well as to the output unit).
9 A problem which their symbolic models were experiencing too.
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well together. Their relationship changed in the early sixties when a new

monarch appeared, one with the largest coffers ever seen in the kingdom of

the sciences: Lord DARPA, the Defence Department’s Advanced Research

Projects Agency. The artificial sister grew jealous and was determined to

keep for herself the access to Lord DARPA’s research funds. The natural

sister would have to be slain.

The bloody work was attempted by two staunch followers of the artificial

sister, Marvin Minsky and Seymour Papert, cast in the role of the huntsman

sent to slay Snow White and bring back her heart as proof of the dead. Their

weapon was not the dagger but the mightier pen, from which came a book

– Perceptrons – purporting to prove that neural nets could never fill their

promise of building models of mind: only computer programs could do this.

Victory seemed assured for the artificial sister. And indeed, for the next

decade all the rewards of the kingdom came to her progeny, of which the

family of expert systems did best in fame and fortune.

But Snow White was not dead. What Minsky and Papert had shown the

world as proof was not the heart of the princess; it was the heart of a pig.”

[Papert, 1988, p.3]

Fortunately, the rediscovery10 of the back propagation learning rule for multi-layer Per-

ceptrons by Rumelhart and the Parallel Distributed Processing group has initiated new

activity in the area of neural networks, [Rumelhart et al., 1986].

As researchers began to realise that there is a significant difference between the

capabilities of two-layer and multi-layer perceptrons (with non-linear activations), es-

pecially after the establishment of the latter as a universal function approximator11,

neural networks were applied to a variety of problems as diverse as pattern recognition

[Bishop, 1995], optimisation and control [McKelvey, 1992], medical prognosis and sur-

vival prediction [Ohno-Machado and Musen, 1996], financial forecasting [Gately, 1996],

earthquake prediction [Hadjiprocopis et al., 1994] with success.

The hype starts again! This time as a neural “gold-rush” which severely alters the

scientific demography. Suddenly victims of Minsky’s and Papert’s diatribe appear

everywhere; martyrs of the dark ages, partisans of a neural ideology, prophets of a

neural religion: they preach neural knowledge, baptise and admit mortals into the

depth of neural apocrypha. The golden age of neural empiricism is about to start.

10 The actual discovery of back propagation is attributed to P. Werbos, [Werbos, 1974].
11 See section 3.3 on page 25 for more details.
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2.3 Connectionist learning

2.3.1 Introduction

Symbolic or rule-based systems use explicit sets of rules and symbol tokens in compu-

tations which are, basically, of a high enough level to allow them to be concerned more

with algorithms and programs and less with hardware. Connectionism, on the other

hand, concerns itself primarily with issues of topology and architecture:

“ . . . one answer, perhaps the classic one we might expect from artificial

intelligence, is ‘software’. If we only had the right computer program, the

argument goes, we might be able to capture the fluidity and adaptability

of human information processing.

Certainly this answer is partially correct. They have been great break-

throughs in our understanding of cognition as the result of the develop-

ment of expressive high-level computer languages and powerful algorithms

. . . However, we do not think that software is the whole story.

In our view, people are smarter than today’s computers because the brain

employs a basic computational architecture that is more suited to deal with

a central aspect of the natural information processing tasks that people are

so good at.” [McClelland et al., 1986, p.3]

The connectionist approach to AI is based on the idea that intelligence emerges through

local interactions of a large number of simple processing units that produce significant

global properties – a notion epitomised by the organisation of the brain. Unlike a rule-

based system, a connectionist network requires no final arbiter, no central control,

no homunculus to put all the inputs together and produce the output. Rather, the

output is an emergent property of the system as a whole, produced by independent,

local decisions/computations and, indeed like an ant colony or a society of bees, the

potential of a connectionist system exceeds the mere sum of the potential of its parts12.

12 Some people would argue that the same apply to other, non-connectionist systems. Let us see

if this is true by way of an example. Consider the case of an integrated circuit made up of simple

transistors. It is true that the potential of the circuit is greater than the sum of the potential of its

parts. However, when one of the billion transistors making up the circuit breaks down, the whole

integrated circuit can not operate any more. The potential of the system is now zero! On the other

hand, the death of a bee or even the death the queen bee has minimal effect on the society of bees as a

whole. Thanks to decentralisation the potential potential of the connectionist system still exceeds the

potential of its parts.
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2.3.2 A new computational architecture

A connectionist, or neural, network consists of a large number of simple and intercon-

nected processing units, the neurons, which send and receive signals amongst themselves

as well as with the outside world. The inputs to a neuron are mapped to a single output,

usually via a non-linear function and are propagated to other neurons via connections

of variable strength, the weights.

They come in many different varieties and flavours, each of which has its own merits and,

also, demerits. Sometimes, as in the case of feed-forward neural networks13, learning is

supervised in the sense that the network expects a “correct” answer from a “teacher”

so as to direct its own responses towards it while no feedback is allowed and, therefore,

the propagation of signals between the neurons has always one and the same direction.

Some other times, as in the case of the Hopfield net for example, feedback plays an

essential role in its operation, while self-organised maps do not require any external

supervision during the learning process.

Despite its implementation details, every connectionist system has some interesting

properties arising from the distributive nature of its architecture, its massively parallel

processing capabilities and its (superficial) resemblance to the human brain:

• Distributivity: Knowledge is represented and manipulated not by symbols con-

tained in predetermined structures (frames, schemata, scripts, etc.) but by dis-

tributing it to the various units of the system following an internal representation

determined by the learning process itself – thus, this process has an implicit char-

acter as opposed to the explicit nature of the symbolic approach. “Learning” is

not centrally controlled14 but, instead, is accomplished synergetically by all the

units of the network.

• Robustness: Damage to a part of a connection machine is, generally, not critical

to its entire performance. This quality of plasticity resembles the human brain’s

ability to recover from damage. In contrast, even a slight damage to the list of

instructions of a computer program or excision of an entry from a database tends

to be disastrous.

• Graceful degradation: Another facet of robustness. It refers to the ability of

neural networks to perform even when either the input (e.g. partial information)

13 This thesis is only concerned with feed-forward neural networks – we will examine them in more

detail in chapter 3 on page 19.
14 Apart from setting some basic interaction protocol, known as the training algorithm.
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or the system are degraded in some manner.

• General-purpose modelling: As general-purpose parametrisable devices, neural

networks are widely used to express analytically the behaviour of a system (spec-

ified by a finite number of observations) and, hence, build a theoretical model

which describes this system.

• Adaptive interpolation, Generalisation, Abstraction: With reference to the

modelling property mentioned above, a neural network is good at abstracting

patterns from data. When presented with an unknown input it will perform

some kind of interpolation based on the learned abstractions and produce a likely

output.

• Constructivist and Nativist at the same time: Connectionism generally as-

sumes and operates within a Piagietian/constructivist framework of learning

where knowledge is built by the learner, not transmitted by the teacher. For

example, before learning begins, the weights are initialised to random values.

However, many implementations of connectionist systems do not assume an en-

tirely tabula rasa, but instead, they incorporate prior knowledge (nativism) to it,

be it in the form of biases to neurons or just by arranging the neurons into a cer-

tain topology. The contribution of this innate knowledge to the overall learning

process can be controlled and, therefore, its effects can be evaluated in practice.

2.4 Connectionism: what is it really worth?

Karl Marx in his seminal work Das Capital argues that commodities are “something

twofold, both, objects of utility, and, at the same time, depositories of value”, [Marx, 1887,

Chapter 1, Section 3]. Perhaps it is not only our personal belief but is shared by many

others that Connectionism and neural networks are such “commodities” holding the

two-fold property:

• Objects of utility, on the one hand, worth no more and no less than what their

existence theorems state in a mathematical language which most of the time can

be irreversibly precise.

• Depositories of value, on the other hand, are worth anything their advocates

state.

Minsky and Papert in 1969, claimed that connectionism was an unfortunate dead end,

a romantic attempt to mimic the infinitely more complex human brain and, hence,
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bound to fail. They wished connectionism’s death and so it happened. Minsky and

Papert were aware, we claim, of the exact value of connectionism as far as utility was

concerned, but it was in their interest, or, perhaps in the wider scientific community’s

interest that connectionism was slain, buried and forgotten. Obviously, they wanted

Lord DARPA’s research funds all for themselves (the symbolic-oriented AI community).

And so they had to show us, people who – unfortunately – are usually concerned with

“commodities” as depositories of value, that the value of this particular commodity

was nil, despite its utility value. In Seymour Papert’s own words, “What Minsky and

Papert had shown the world as proof was not the heart of the princess; it was the heart

of a pig”.

The excitement in the field of AI, which peaked in the eighties with the advent of

expert systems as hundreds of millions of venture capital invested into companies with

such emblematic names as Symbolics and LISP machines or Japan’s infamous Fifth

Generation project, had soon run out of fuel. By 1990 came a shake-out, as even the

most ardent proponents of symbolic AI had to admit that their models, for all their

Turing equivalence, could not lead us to the holy grail of computer science, the humanly

thinking computer, HAL15.

It was then remembered – ex machina deo – that some time in the past there has

been an alternative model for intelligence: Connectionism. Although as an object of

utility, connectionism is not worth much more than it was back in 1969 or 1974, from a

depository of value point of view, its virtues and potentials are now highly stressed and

even exaggerated. Again, there is a lot of vacuous prattle going on, in a motif borrowed

from the fifties. This time, however, the Minskys and Paperts of our story are much

more and so are the research funds, as Lord DARPA’s cousins in every corner of the

world are willing to engage in ambitious projects in order not to be left behind in the

strategic quest for silicon intelligence.

With one of the sister sciences on early retirement, the second sister will get a chance,

for the next five, ten years or, eventually, until its deposited value deflates.

15 In S. Kubrick’s 2001, HAL was activated on January 12, 1992.
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chapter III

feed forward neural networks

Where an important category of connectionist systems called feed for-
ward neural networks – the main concern of this thesis – is examined.

3.1 Introduction

An important category of connectionist architectures goes under the name of feed

forward neural networks (ffnn). These are systems where training is exercised through

a supervised process by which the network is presented with a sequence of input vectors

and the respective desired output responses. “Learning” occurs by adjusting the free

parameters of the network in a way that the total discrepancy between the desired and

obtained outputs is minimised for all the training vectors.

ffnn are made of neurons – simple, linear or non-linear1 computing elements whose

basic function is to sum up all their inputs and pass the result to other neurons. They

are arranged in layers, one next to the other, and the layers are arranged one after

the other. Neurons belonging to the same layer receive inputs from neurons of the

previous layer(s) and send their output to neurons of the next layer(s). The strength

of the connection between two neurons is called a weight. The state of the set of all the

weights determines completely the behaviour of the network. A formal description of

ffnn and the neuron can be found in section 3.2.

A lot has been said about the brain-like properties of ffnn, for example learning and

generalisation. However, the true value of ffnn arises from its universal function ap-

proximation property: a ffnn with a single hidden layer and employing as many hidden

1 On deciding between a linear or a non-linear activation function, one must take account of the fact

that any superposition and/or composition of linear functions is itself linear and can, therefore, express

only linear functions. Thus, a ffnn may not consist entirely of linear activations if it is necessary to

approximate non-linear functions.

19
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units (with non-linear activations) as required can approximate any real, continuous

function arbitrarily well. Unfortunately, the practical importance of this statement is

limited as the requirements for realising this structure, e.g. number of hidden units and

methods for selecting optimum values for the set of weights, are not fully quantified.

In section 3.3 we describe Hilbert’s 13th problem, its resolution by Kolmogorov

and the subsequent improvements by Lorenz and Sprecher leading to a theorem which

guarantees (but does not define) the existence of a neural network which can represent

exactly any real, continuous function in the n-dimensional unit hypercube (e.g. [0, 1]n).

Finally, we look at approximate representations of functions using neural networks

since the utilitarian value of Kolmogorov’s theorem is minimal.

The process of adjusting the weights, e.g. training, so that the discrepancy between ex-

pected and obtained output values is minimised can be very complex, not only because

the number of weights can get very large but also because there are several training ex-

amples, which in many instances can be contradicting. The most widely used training

method, the back-propagation or generalised delta rule, is based on the original delta or

least-mean-squares rule introduced by Widrow and Hoff, [Widrow and Hoff, 1960], and

applied to the adaptive linear element (Adaline) perceptron model.

We will have a brief look at back-propagation in section 3.4. Also, appendix A on

page 169 contains a derivation of the back-propagation equations.

3.2 FFNN Formalism

Figure 3.1 on the facing page shows an example of a generic ffnn2 with L layers

(including the input and output layers), n inputs and m outputs. This topology is

associated with the general mapping Φ : IRn 7→ IRm. The notation we will be using in

this and subsequent sections follows:

• the input vector to a ffnn is denoted as X, the output vector as Y and the

target output vector as T,

• the input to the ith unit of the lth layer is a vector, denoted by xl
i while the output

of that unit as yli (a scalar),

• the set of the output values of all the units of the lth layer is denoted by the

2 According to the following definitions, Radial Basis Functions (rbf) classifiers could belong to

the family of ffnn too if it were not for definition 3.1 which requires that the kernel functions be

monotonic – something that rbf’s gaussian kernels obviously lack. However, if the requirement of

monotonicity is relaxed then rbf neural networks are covered by these definitions too.
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vector yl,

• The set of all the weight values of a ffnn is denoted by the matrix W,

• the vector wl
j holds the weights of the connections between the jth unit of the lth

layer and all the units of the previous layer, l − 1,

• wl
ji denotes the weight (a scalar) of the connection between the jth unit of the lth

layer and the ith unit of the previous layer, l − 1,

• the number of units of the lth layer is given by u(l).

Y

mY

2Y

1

n

2X

X

X 1

Layer l-1Layer 2

Layer 1

Layer l

Figure 3.1: A generic ffnn topology with L layers mapping IRn 7→ IRm

3.2.1 Operation of the neuron

Firstly, let us define the operation of a single neuron associated with:

• a row vector of adjustable parameters, the weights, w = (w1 w2 . . .@! wp) ∈
IRp,

• a column vector of incoming signals, x = (x1 x2 . . .@! xp) ∈ IRp,

• a bias value, b ∈ IR,

• an activation function, σ(·).
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The operation of a neuron consists of:

• the weighted sum of the incoming signals is calculated as w · x =
∑

iwixi,

• the bias value, b, is added to the above sum,

• the output is calculated as y = σ(w · x+ b), σ ∈ S (see definition 3.1, below).

The above procedure applies to all the neurons of a ffnn with the notable exception

of the first layer units whose role is limited to distributing the input vector, X, to the

next layer. The activation function, σ(·), is usually chosen to belong to the family

of sigmoids S (see definition 3.1) with, again, the possible exception of the output

layer units which might employ any activation function which is compatible with the

statistical properties of the output vectors. For the sake of generality we will not assume

that the activation for each neuron is the same. Instead, the ith neuron of the lth layer

employs the activation function σli.

Definition 3.1 Let S be the family of all functions which are monotonic, increasing,

differentiable and bounded (e.g. IR 7→ [0, 1]) in IR.

Definition 3.2 Let Ap be the family of all affine transforms in IRp:

Ap = {A : IRp 7→ IR|A(x) = w · x+ b

=

p∑
i=1

wixi + b, b ∈ IR and x,w ∈ IRp}

Definition 3.3 Let N p be the family of functions implemented by a hidden layer neu-

ron:

N p = {N : IRp 7→ IR|N(x) = σ(A(x)), x ∈ IRp, A ∈ Ap and σ ∈ S}

Using the above definition, the output of the jth unit of the lth layer (1 < l < L) as a

function of the outputs of all the neurons of the previous layer, yl−1, and the weights

of all the connections with the units of the previous layer, wl
j , is:

ylj = N(yl−1) = σlj(A
l
j(y

l−1)) = σlj(w
l
j · yl−1 + blj)

where, Al
j(·) and σlj(·) are the affine transform and activation function associated with

the jth unit of the lth layer.
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3.2.2 Operation of the FFNN

The output of the ffnn corresponding to a given input X is the vector:

Y = {σL1 (AL
1 (y

L−1)) σL2 (A
L
2 (y

L−1)) . . .@! σLm(AL
m(yL−1))} = yL (3.1)

However, for simplification purposes, we can assume a ffnn with a single, linear output

unit and a single hidden layer with non-linear units, as depicted in figure 3.2. As we

shall see later, such a single hidden layer ffnn with an arbitrary number of hidden

layer units is sufficiently complex for universal function approximation.

Layer 3

Y 1

Layer 2

1X

Layer 1

n

2X

X

Figure 3.2: An ffnn with a single hidden layer, mapping IRn 7→ IR

Definition 3.4 Let Gn be the family of all the functions that a ffnn with n inputs, a



24 chapter iii

single hidden layer of q non-linear units and a single, linear output can implement:

Gn = {gn : IRn 7→ IR|gn(x) = A3
1(N

2(x))

= b31 +

q∑
i=1

w3
i1 σ

2
i (

n∑
j=1

w2
jixj + b2i ), (3.2)

where, x ∈ IRn, A3
1 ∈ Aq, N2

i ∈ N n and N2(x) = (N2
1 (x) N2

2 (x) · · · N2
q (x))}
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3.3 FFNN as Universal Function Approximators

In 1900, David Hilbert as a new Eurystheus had set a number of “labours” to the many

young Hercules, the mathematicians of the twentieth century. At a lecture delivered

before the International Congress of Mathematicians in Paris he challenged the present

and future scientific community with twenty three mathematical problems in the hope

“. . . to cast a glance at the next advances of our science and at the secrets of its

development during future centuries”, [Hilbert, 1902].

The 13th problem, namely the Impossibility of the solution of the general equations

of the 7th degree by means of functions of only two arguments, can be generalised to

the problem of trying to represent any real, continuous function of n arguments by

superposition of compositions of as many as required functions of m≪ n arguments.

In the mid to late 1950’s A. Kolmogorov and V.I. Arnold in a succession of papers

“fought” a battle of who was going to be first to settle Hilbert’s 13th challenge. Even-

tually, Kolmogorov won. In 1957, he published an important theorem concerning the

approximation of arbitrary continuous functions, f : [0, 1]n 7→ IR, in terms of functions

of a single variable, [Kolmogorov, 1957]:

Theorem 3.1 Any continuous function, f , of n variables, (x1x2 . . .@!xn) ∈ [0, 1]n,

can be characterised completely by finite superposition of compositions of functions of

one variable as:

f(x1, x2, . . .@!, xn) =
2n+1∑
j=1

gj(
n∑

i=1

ψij(xi)) (3.3)

where the gj ’s and ψij ’s are continuous functions (of one variable). Furthermore, the

ψij ’s are fixed, monotonic and increasing functions which are not dependent on f .

In 1965, D.A. Sprecher obtained an improvement over Kolmogorov’s original theorem

in the sense that the gj ’s are replaced by a single g which is real, continuous and

does depend on f and the ψij ’s are replaced by a single ψ which is real, continuous,

monotonic, increasing and independent of f :

f(x1, x2, . . .@!, xn) =

2n+1∑
j=1

g(

n∑
i=1

λiψ(xi + ϵ(j − 1)) + j − 1) (3.4)

where ϵ is a positive, rational number and λ is a constant independent of f . Observe

the presence of the “bias” terms ϵ(j−1) for the hidden layer units (e.g. the inner sum)

and j − 1 for the output unit (e.g. the outer sum).

Despite the fact that Sprecher’s exact representation leads to a three-layer neural
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network, mapping3, f : [0, 1]n 7→ IR, the important issue of how to construct such a

network is not dealt with. In general, Kolmogorov’s original theorem, as well as all

the improvements followed that, are concerned with the existence of representations of

a function by different univariate functions but are not addressing at all the practical

issues of the construction of such a composition. For example, the functions g and

ψ are highly non-smooth and virtually unknown. Furthermore, according to Poggio

and Girosi, “g is at least as complex, in terms of bits needed to represent it, as f”,

[Poggio and Girosi, 1989, p. 7].

In view of all the practical difficulties associated with an exact decomposition of f ,

research had been directed towards approximate representations which seemed, and in-

deed were, more promising from a practical point of view. In recent years, several sci-

entists, [Cybenko, 1989], [Funahashi, 1989], [Hornik et al., 1992], [Kůrková, 1991] and

others, attempted, successfully, to approximate, with arbitrary precision, the general

real, continuous n-dimensional function, f(x1, x2, . . .@!, xn), by finite linear combina-

tions of non-linearities4:
q∑

i=1

λiσ(wi · x+ bi) (3.5)

where λi and bi are constants ∈ IR, wi ∈ IRn, x = (x1 x2 . . .@! xn) ∈ IRn, σ ∈ S (see

definition 3.1 on page 22) and is fixed, in contrast to Kolmogorov’s exact representation

formula which uses different functions (the gj ’s and ψij ’s).

3.4 The back-propagation of error training method

3.4.1 Introduction

The training of the two-layer perceptron as well as that of its multi-layer successor, the

ffnn, is said to be supervised in the sense that a “teacher” defines what the network

response to a given input stimulus should be. The modification of the adjustable

parameters of the network aims at making the actual and desired network response

coincide and is guided by the training algorithm, which in turn, makes its decisions

based on the discrepancy between the obtained and expected responses.

The training algorithms employed by supervised learning neural networks are, largely,

3 Use f : [0, 1]n 7→ IRm when dealing with more than one output. In this case,

f = (f1(x1, x2, . . .@!, xn), . . .@!, fm(x1, x2, . . .@!, xn)) ∈ IRm

4 Observe that this is the equation describing a three-layer ffnn with n inputs, q hidden layer

units employing sigmoidal activation functions and a single output as in figure 3.2 on page 23 and

definition 3.4 on page 23.
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implementations of the gradient descent optimisation method which searches for the

best combination of weight values by minimising the mean squared error5 associated

with the given network and a set of inputs and expected outputs.

We shall describe what gradient descent is in the next section, but firstly, let us define

a measure of the discrepancy between the obtained and expected network responses by

using the notion of mean squared error :

Definition 3.5 Given an ffnn, the set of its adjustable parameters, W, a set of

v training pairs consisting of an input vector, X ∈ IRn, and a target output vector,

T ∈ IRm and the obtained output response, Y ∈ IRm, a measure of the error associated

with that ffnn is given by:

E(W) = ||T−Y||2

=
1

2mv

m∑
i=1

v∑
j=1

(Tij − Yij)
2 (3.6)

The function E(W) defines a multi-dimensional error surface6, for a given set of input,

output and target vectors. For each combination of weight values, W, there is an error

value proportional to the discrepancy between the obtained and expected (target) ffnn

outputs. Training consists of finding the optimum set of weights7, W0, which gives an

acceptably low error.

3.4.2 Gradient descent

Being on the top of a hill, the shortest route to a valley below, is by descending

the steepest slope. Similarly, being anywhere on the error surface, E(W), the shortest

route to a minimum, being either local or global, is in the direction of the steepest slope

(gradient). Thus, ffnn learning rules based on the gradient descent method require

that the weight vector changes in the direction pointed by the negative gradient of the

mean squared error function. In this way, the error will decrease at the fastest possible

rate. Therefore, the weight update or learning rule is given by the following expression:

W(t+ 1) = W(t)− β ∇WE (3.7)

5 “One problem is that there can not be any standard, universal way to measure errors, because
each type of error has different costs in different situations. But let us set this issue aside and do
what scientists often do when they can’t think of anything better: sum the squares of the differences”
[Minsky and Papert, 1988, Epilogue]

6 This error surface has a dimensionality equal to the number of elements in W plus one, the bias

value. The dimensionality is, thus, equal to the number of adjustable network parameters.
7 The set of adjustable network parameters includes the weights as well as the biases to each

neuron’s activation. For the sake of clarity we will not refer to the biases separately.
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where, W(t) is the set of weights at time t, β ∈ IR is a constant controlling the weight

change8 and ∇WE is the gradient (also known as curl) of the error function, E(W)

with respect to the weights.

3.4.3 Back-propagation

Back-propagation is a training algorithm inspired by the gradient descent optimisation

method and adapted to the case of the many layers of weights and computational nodes

of an ffnn. In fact, back-propagation is nothing more than just a particularly efficient

method (thanks to chain rule) to compute ∇WE.

We have already talked about back-propagation’s colourful history in section 2.2 on

page 9. It is a method which is constantly modified and enhanced with little embel-

lishments here and there. It is also a highly criticised algorithm because of its many

inefficiencies and uncertainty of convergence, or actually, its convergence to minima

of uncertain nature (e.g. local or global?). For a more detailed description of these

criticisms, refer to sections 4.4.2 on page 40 and 4.4.3 on page 43.

None-the-less, it constitutes a very important discovery in the field of neural networks

as it has opened up the avenues for the use of multi-layer networks, in the late 80’s,

and the revival of neuro-computing. Why it had to be re-invented and popularised by

Rumelhart in 1986, when it was once proposed by Werbos, [Werbos, 1974], ten years

earlier is another story. . .

The main problem with equation 3.7 on the previous page when applied to multi-layer

perceptrons, lies in calculating the gradient of the error with regards to all the weights

of the network, ∇WE. Consider equation 3.2 of definition 3.4 on page 23. The output

of a ffnn, gn(X), depends directly on the weights of the output layer, w3, but indirectly

on the weights of the hidden layer, w2. “Indirectly” in the sense that the effect of w2

upon gn is through the activation function, σ. As a result, the calculation of ∇WE

becomes complicated.

Back-propagation works in three phases. The first phase consists of propagating the

input vector through all the computational units until the output and, subsequently,

the error values are obtained. In the second phase, the errors from the output layer are

propagated (e.g. back-propagated) to the previous layers and the contribution of each

8 The role of this constant is crucial in reaching a solution: if it is large, it speeds up the convergence

but the weights are changed in big steps and therefore a potential solution might be overlooked. In the

scenario of descending the hill, β is equivalent to the size of our footstep. If too small, it will take us a

long time to reach the valley, if too big, we might end up ascending the next hill, missing entirely the

valley below us!
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weight to the error is calculated. There the effect of the current layer’s weight values

in the error is calculated. Finally, during the third phase, the weights are modified

according to the findings of the second phase.

For a derivation of the back-propagation equations refer to Appendix A on page 169.

Also, section 4.4 on page 39 explains in more depth the problems associated with the

use of this training algorithm.
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chapter IV

critique of ffnn

That neural networks are a panacea, is a myth. In this chapter we
describe the main points of the critique associated with the use of feed
forward neural networks and give examples of where and how they are
bound to fail.

4.1 Introduction

Ever since their appearance, neural networks have been in the center of heated argu-

ments and controversy essentially because Connectionists had “audaciously” attempted

to extend their networks from “processing waveforms or evaluating credit histories”,

[Anderson and Rosenfeld, 1988, p. 599], to trying to understand how the human mind

works.

Following are some of the main criticisms expressed which are directly or indirectly

relevant to scope of this work:

1. Linear classifiers (the perceptron for example) can implement discriminant func-

tions (decision planes or hyper-planes in higher dimensions) which are only linear.

Because this class of functions is very restricted and forms only a very small sub-

set of the total number of all possible decision boundaries, linear classifiers are

simply not powerful enough to be used in applications where it is important that

an exact decision boundary is found. A classical demonstration of this is when

the perceptron attempts to learn the xor function (see appendix B on page 173).

In section 4.2.2 we explain the facts mentioned above in detail and quantify the

limitations of the perceptron. Note that these problems are associated only with

the task of finding an exact representation for a given training set. In applications

where we are primarily interested in good generalisation these concerns are largely

irrelevant and the perceptron with its simple architecture and training process,

31
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proved to be a useful and practical tool.

2. The addition of an intermediate layer of processing units (hidden layer) and the

use of non-linear activation functions in the original perceptron design led to the

non-linear, multi-layer perceptron (or ffnn in our terminology). The capabilities

of such a multi-layer construction can be appreciated from the implication of a

mathematical result, due to Kolmogorov, on the existence of exact representations

of continuous functions by superpositions of one variable functions. See section 3.3

on page 25 for more details.

Even so, the utilitarian value of Kolmogorov’s theorem is weakened by some yet

un-answered questions regarding the construction of the neural network1 as well

as by problems of extreme sensitivity to the input variables. For these reasons,

researchers in the field of neural networks are no longer seeking exact representa-

tions but rather an approximation to the training data, with arbitrary accuracy.

The latter is guaranteed by the Stone-Weierstrass theorem on universal function

approximation. However, one must note that universal function approximation is

one thing and universal computation (Turing) is another!

A discussion about using neural networks for exact representation of functions as

well as the universal function approximation property can be found in section 3.3

on page 25.

3. For the simpler case of linearly separable data, the perceptron training algorithm

could find an optimal set of weights relatively fast. With the addition of another

layer of processing units, however, many more weights have to be optimised.

Consequently, training these networks becomes more difficult, especially as the

number of input dimensions increases. Thus, one may ask whether, given a neural

network and a set of training examples, there exists a set of weights for which the

network produces the correct output for all the examples. This is usually referred

to as the loading problem and it has been shown that it is NP-hard or NP-complete

depending on the network topology and activation functions employed.

This result is mainly of theoretical importance to the problem of efficient training

of neural networks. In practice, the implications of the loading problem are not

as dramatic since we are not as much interested in memorisation as we are in

generalisation of the training set. This issue is discussed in section 4.3.

1 For example, answering questions such as how many hidden units or what activation functions

without resorting to rules of thumb.
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4. The nature of the error surface and, in particular, the existence of local minima

presents one of the biggest problems in training a neural network.

On the one hand, the error surface depends not only on the network topology but

also on the particular training set, cost function used and kernel type. On the

other hand, back-propagation and, generally, gradient descent-based optimisation

methods lack simple and effective mechanisms to avoid local minima2.

As the number of weights in a neural network increases (e.g. in order to deal

with high-dimensional training data associated with “real world” problems – as

opposed to “toy” problems) the error-weight space explodes exponentially in the

number of dimensions due to the “curse of dimensionality”3. Thus, the search

in this space for optimal weight values, with or without back-propagation, is

seriously hindered. It has to be mentioned here that in some occasions the di-

mensionality of a problem can be reduced without serious loss of information by

application of various dimensionality reduction techniques. For example, Princi-

pal Components Analysis, [Bishop, 1995, p. 180], is such a technique which has

been widely used in reducing the dimensionality of the problem so that it is solved

by a smaller neural network.

In addition, the error surface becomes very nasty, in terms of multi-modality,

complexity, dimensionality and number of stationary points, when networks are

scaled up to tackle with problems of the “real world”.

Certainly, there are instances of error surfaces with no local minima. Those, how-

ever, require linear separability of the training patterns (which may be achieved

by increasing the number of input variables, see section 4.2.2) or a huge number

of hidden layer units which will reduce the generalisation ability of the network

and hinder the training process even more.

These problems are examined in sections 4.4.2 and 4.4.3.

5. A problem which is related to the neuron fan-in is that of premature neuron

saturation. This refers to situations where the input signals to the hidden layer

nodes are so high that the neurons are forced to produce an output response

very close to the upper bound of their sigmoid activation. Saturation causes the

neurons to lose their sensitivity to input signals, the propagation of information

2 It is not accidental that most AI courses introduce the technique of hill climbing by the example

of a blind person ascending a hill. Blind, indeed, is gradient descent!
3 The exponential growth of the volume (of Euclidean space) as its dimensions increase is known

as curse of dimensionality.
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is blocked and, thus, sub-optimal solutions arise. This problem is discussed in

section 4.4.4.

6. Although a ffnn is an inherently parallel computational system, it is quite diffi-

cult to obtain any practical benefits from this feature. The fine-grain parallelism

involved and the nature of the back-propagation algorithm require intense com-

munication between the processing elements (neurons). Thus, any advantage

gained from parallelised operation will be lost in the face of vast communication

overhead.

The feasibility of parallel implementation as well as the main constraints on hard-

ware execution of ffnn are discussed in section 4.5.

7. The current neural network architectures are criticised for their non-explicit na-

ture of learning. The most common and convenient description of a neural net-

work is that of a black box where intermediate learning steps are either unavailable

or difficult to visualise. Section 4.6 refers to these criticisms.

The above criticisms will be discussed extensively in subsequent sections. The chapter

ends with section 4.7 which contains a summary of the main points.

4.2 The power of linear classifiers

4.2.1 Order of a predicate and the perceptron

Among the first “neuro-sceptics” to doubt the universal applicability of neural net-

works were Minsky and Papert. In 1969 (see section 2.2 on page 9) they drew the line

between what can and can not be learned by the neural network models of their time

(e.g. the perceptron).

Their main contribution, [Minsky and Papert, 1969], is the concept of order associated

with a given perceptron configuration. Order limits the predicates that are computable

by a perceptron in the sense that a perceptron with a given order O can not be trained

to compute any predicate whose order is greater than O. So, whenever a given problem

is of low order, the perceptron performs well. However, for tasks with unbounded order,

problems of size and scaling are encountered: in order to increase the likelihood for a

perceptron to learn to compute high-order functions, the number of connections must

be high.

The basic idea behind Minsky’s and Papert’s concept of order was not new. Essentially,

it is a re-formulation of the problem where a classifier lacks the expressive power to im-
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plement all decision boundaries a problem might require. A more thorough study of the

power of linear classifiers (not only of the perceptron) was done by Cover, [Cover, 1965],

in 1965. Later, Vapnik and Chervonenkis introduced the notion of the growth function

associated with a classifier, while studying the relationship between relative frequencies

of events and their probabilities, [Vapnik and Chervonenkis, 1971] (see appendix C on

page 175 for more details). Finally, Valiant, [Valiant, 1994], formalised the learning

problem, thus, allowing all these ideas to be combined in a unified framework, the

Probably Approximately Correct (pac) learning.

The essential difference, however, between Minsky’s and Papert’s order of a perceptron

and the various other measures of the power of linear classifiers as described in the

previous paragraph as well as in the next section, is that the former is described in

a framework which ignores the fact that a perceptron is more a linear classifier than

anything else. Had Minsky and Papert made their critique starting from the fact that

a perceptron can only implement linear decision surfaces, they would have been far

more constructive and, probably, have arrived to the solution of the problem with less

controversy and friction.

4.2.2 Linear separability

Another limiting factor of a perceptron’s classification ability is the requirement that

its input patterns be linearly separable. A set of M -dimensional points belonging to

two classes, A and B, is said to be linearly separable if there exists a hyper-plane (in

M dimensions) which can form a decision boundary between points of class A and

points of class B. Since a perceptron is basically a linear threshold device, e.g. it

can implement only linear decision surfaces, linear separability of the input patterns is

strictly necessary for successful (e.g. by 100 %) classification.

It is interesting to consider the fraction of the dichotomies4 of N points in general

positions5 in M dimensions which are linearly separable. This is given by the following

expression, [Cover, 1965]:

4 The term dichotomy refers to each possible binary (e.g. only two classes, A and B) classification

(labelling) of points in continuous M -dimensional space. For N such points, the total number of

dichotomies is 2N .
5 N points are in general positions when there is no subset of M or fewer points which are linearly

dependent. An equivalent definition of the term general positions is the following: when N > M , N

points are in general positions in an M -dimensional space if and only if no M + 1 points lie on and

(M − 1)-dimensional hyperplane. When N ≤ M , N points are in general positions if no (M − 2)-

dimensional hyperplane contains all the points. See for example appendix B on page 173.
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PN,M =


1

2N−1

∑M
i=0

(
N−1
i

)
for N > M + 1

1 for N ≤M + 1
(4.1)

We can see from the above equation that when N ≤M + 1 all N patterns are linearly

separable and, hence, the perceptron will be able to classify them correctly (it is just

a question of finding the correct weight values). On the other hand, if the number of

patterns is greater thanM+1 then the number of linearly separable patterns diminishes

as the ratio N
M+1 increases. Consequently, the probability that a perceptron will be

successful in a classification task becomes minimal when N is 3 or 4 times greater than

the number of input dimensions, M .

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

P
(N

,M
)

N/(M+1)

M=1
M=2
M=3
M=4

M=20
M=40
M=60
M=80

M=100

Figure 4.1: Plot of the quantity PN,M for various values of M , the number of input

dimensions.

Figure 4.1 shows various plots of equation 4.1 for differentM values (M = 1 is indicated

by a continuous line whereas M = 100 lies on the opposite side of the envelope). We

can see that as long as the ratio N
M+1 is kept below the critical value of 2 and for any

N , the linearly separable patterns are dominant. However, as soon as N
M+1 becomes

greater than 2 (by increasing N and/or decreasingM), the number of linearly separable
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patterns falls rapidly. In this case, the perceptron is obviously inadequate6.

Today, however, the perceptron and, in general, most neural network classifiers are
used in tasks which do not involve memorising the complete set of all input patterns.

Today, people7 place more emphasis in generalisation than in memorisation as they

are primarily interested in designing systems which are accurate when presented with

previously unseen data even though they may fail to separate the training data exactly.

4.3 FFNN: Issues of Computational Complexity

4.3.1 Introduction

One direction to approach theoretical questions regarding learning by neural networks

originates with the work of Judd, [Judd, 1988] and [Judd, 1990]: “Given a network

architecture (interconnection graph as well as choice of activation function) and a set

of training examples, does there exist a set of weights so that the network produces the

correct output for all examples?”. This question is known as the loading problem and

is of fundamental theoretical importance to artificial neural networks.

We say theoretical importance because the scepticisms regarding neural network con-

vergence to an optimum solution are mainly coming from mathematicians or theoretical

computer scientists not working in the area of AI. On the other hand, users have re-

ported no serious troubles and have developed a practical feeling on the design and

training of neural networks in a somewhat “magic” environment.

4.3.2 Some complexity classes

An informal discussion of some well known structural complexity classes is given be-

low8. Basically, this classification is based on the subtle distinction between solving

a problem using a deterministic algorithm and checking a solution reached by a non-

deterministic algorithm.

• Class P: a problem is in the class P when there is a polynomial time9, deterministic

algorithm which solves the problem.

6 In order to remedy this situation one has to keep the value of N
M+1

(well) below 2. This can be

achieved by either increasing the number of input dimensions or by decreasing the number of input

patterns. The xor problem (or the parity problem in higher dimensions) can be learned by a perceptron

if more inputs are added. See appendix B on page 173 for a reference to the xor problem.
7 In pattern recognition and signal processing for example.
8 A standard text on structural complexity classes is [Garey and Johnson, 1979].
9 In the length of any reasonable encoding of the inputs.



38 chapter iv

• Class NP: a problem is in NP when a “guessed” solution for the problem can

be verified in polynomial time. This allows for non-deterministic algorithms to

be used in guessing solutions and then verify them in polynomial time. Thus,

the class NP contains those problem for which10 a deterministic algorithm would

yield a solution in exponential time whereas a non-deterministic algorithm finds

a solution in polynomial time. Problems in NP are further categorised into:

– A problem X is NP-hard if and only if any problem Y in NP can be trans-

formed in polynomial time by f to X, such that given an instance I of Y ,

I has a solution if and only if f(I) has a solution.

– A problem is NP-complete if and only if it is both NP and NP-hard. The

travelling salesman and general satisfiability11 problems both belong to the

NP-complete class.

It is known that P ⊆ NP, however, whether P ⊂ NP (i.e. a strict inclusion) is still an

open question because no problem has been found, yet, for which one can prove that

it is NP but not P.

4.3.3 Known results

The loading problem, as formulated by Judd, seems to be a relevant model (some

reservations are expressed in the conclusions, see section 4.3.4) for supervised learning

using ffnn. It is known that this problem is generally NP-complete and that many

strong restrictions on design parameters do not help to avoid the intractability of load-

ing, [Šima, 1994]. Wiklicky has extended these results and proved that the loading

problem for higher order networks is even undecidable, [Wiklicky, 1993].

Blum and Rivest, [Blum and Rivest, 1988], have shown that the loading problem is NP-

complete if the neural network (ffnn) contains only three units using the threshold

activation function. This result has been generalised for neural networks using semi-

linear activation functions, [DasGupta et al., 1995]. Still, the activation function is

non-differentiable and, thus, it can not be used with any gradient descent training

methods.

Finally, in [Šima, 1996] it was shown that the loading problem for a 3-node neural

network with sigmoidal activations and zero bias value for the output node (a condition

10 Here lies one of the most fundamental and famous problems of Computer Science: is P = NP or

not?
11 3-SAT and up.
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Šima calls output separation) is NP-hard. This implies that training ffnn with a single

hidden layer which satisfy the output separation condition is intractable.

4.3.4 Conclusion

The results mentioned in this section are undoubtedly pessimistic because they are

derived by imposing several and strict conditions on the architecture and nature of the

neural network. Choices, which in practice are – at least – rare12, are here necessary

in order to simplify the loading problem. In addition, the way the problem has been

formulated does not exactly coincide with the aims of usual practices of training and

testing a neural network. In reality, the purpose of training a neural network is not

memorisation of the training patterns (that is what the loading problem assumes) but,

instead, a good generalisation behaviour when the network is presented with unknown

patterns (extracted from the same source as the training patterns). This, of course,

means that the final set of weights is not, necessarily, required to be selected on the

assumption of zero training error. These results are – none-the-less – significant in

the sense that they give us an indication of the upper bounds of the computational

complexity of training a neural network. Whether these results are to be expected in

practice or not is a totally different issue.

4.4 Learning as optimisation

4.4.1 Introduction

Supervised learning with neural networks has always been studied and dealt with as

a problem of optimisation. The various perceptron’s training algorithms are more or

less straight-forward implementations of the gradient descent method. More complex

neural network architectures require more complex learning algorithms; all of which

are invariably based on gradient descent.

The difference, however, between the training algorithms for the perceptron and Ada-

line13 and the more complex algorithms for multi-layer neural networks is that the

former’s error function in the weight space has a unique valley – a unique global min-

imum, [Baldi and Hornik, 1989]. Therefore, reaching this point with gradient descent

is just a matter of choosing the correct step size (learning rate). This is no longer true

12 For example [Höffgen, 1993] announces NP-completeness results for the loading problem on the

assumption that the weights be restricted to binary values of −1 and 1!
13 ADAptive LINear Element is, basically, a single layer network with a linear activation function

at its output. See [Widrow and Hoff, 1960] for more details.
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for the case of gradient descent applied in multi-layer, non-linear architectures. In this

case the error function has a much more complicated topography with numerous local

minima.

4.4.2 Back-propagation

Firstly, a clarification of what is meant by back-propagation. Back-propagation is an al-

gorithm which implements the gradient descent optimisation technique on differentiable

error functions which do not depend directly on their inputs but rather on functions of

the inputs14. In effect, back-propagation is a way to calculate the derivatives of the cost

function with respect to each of the free parameters of the network without explicitly

working out the analytic expressions for the derivatives. Where these expressions are

available, the algorithm is not necessary. Although this is rarely the case because the

introduction of non-linear activation functions and hidden layers in the neural network

architecture renders the analytic methods fractious.

As Minsky and Papert pointed out:

“ We have the impression that many people in the connectionist community

do not understand that this [the back-propagation algorithm] is merely a

particular way to compute a gradient and have assumed instead that back-

propagation is a new learning scheme that somehow gets around the basic

limitation of hill climbing.” [Minsky and Papert, 1988, p.286]

In addition, issues of computational complexity of the back-propagation algorithm be-

come important as the number of free parameters of the network (the weights and

biases) as well as the number of inputs and the number of training examples increase.

If any forward and backward step costs O(|W|) (|W| being the number of weights and

biases) and is performed for all T patterns, P times (e.g. the number of training itera-

tions), an estimation of the learning time on sequential machines is then proportional

to

T × P × |W| (4.2)

Example 4.1 The fact that the training time of a ffnn for a fixed number of epochs15

is proportional to the number of weights has been confirmed with the following experi-

mental setup. A training data set consisted of 10 vectors each of 50 input variables and

14 The level of indirection depends on the number of hidden layers of the neural network; each hidden

layer adds one more level.
15 The cycle of presenting all the training examples to the network once and doing all the necessary

weight updates is called an epoch.
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1 output and was produced by the procedure Levy6 (for more details on this procedure

refer to section 6.3.5 on page 89). A ffnn of variable number of weights was trained

with this data set for 1,000 epochs. The average training time (over 10 repeats for each

different size) was recorded for different number of weights. The results depicted in

figure 4.2 show that the mean training time of a fully connected ffnn is proportional

to the total number of weights, for fixed number of epochs and training size.
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Figure 4.2: ffnn training time is proportional to the number of weights

The number of adjustable parameters in a fully connected, ffnn of l layers16 with

respect to the number of units per layer (L = {Li}li=1) and the number of input

dimensions (N) is given by:

|W| =
|L|−1∑
i=1

Li × Li+1 +

|L|∑
i=1

Li (4.3)

Thus, the convergence time expression with respect to the number of input dimensions

and hidden layer units is proportional to:

T × P × (

|L|−1∑
i=1

Li × Li+1 +

|L|∑
i=1

Li) (4.4)

16 The l layers include the input layer, all the hidden layers and the output layer.
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The above polynomial primarily depends on the number of input dimensions N , N =

L1. The number of units of the hidden layers must also, somehow, reflect the size of

the input layer. Even with moderate settings and conservative rules of thumb, the

number of free parameters that have to be adjusted by back-propagation may reach

very high levels causing extremely long training times and a high probability of falling

in one of the numerous local minima. The fact that many “real world” problems require

networks of several thousands of weights (e.g. in hand-written character recognition or

speech recognition tasks) implies that successful training algorithms effectively have to

face the curse of dimensionality. Section 5.7 on page 74 compares the training times

for a single ffnn and an ffnn entity.

One of the advantages of back-propagation is its local nature. Without the need for

information on more than the previous and next layer units, the algorithm can be

parallelised – though not very efficiently due to communication overheads, as we will

see in section 4.5.1 – with all the benefits this implies. Locality, however, is not always

an advantageous feature of an algorithm. Gradient descent is a local optimisation

method and this is the main reason why it is so susceptible to local minima (see also

the next section).

A possible remedy to the shortcomings of local training algorithms is to employ global

optimisation techniques in conjunction with probabilistic methods. Unfortunately,

these algorithms (see for example [Torn and Zilinkas, 1987], [Zhigljavsky, 1991] and

the magic hair-brushing algorithm in [Chao et al., 1991]) require extremely long time

to converge to a solution due to their probabilistic nature. Some alternative attempts

to use global optimisation in a deterministic framework (e.g. the Terminal Attractor

Back-Propagation algorithm proposed in a paper by [Wang and Hsu, 1991]) generally

failed in discovering the global minimum. As pointed out in [Bianchini et al., 1997]:

“there is no theoretical assurance that the global solution will be reached, unless the

starting point lies in the domain of attraction of the global minimum” – this means

that the only guarantee for reaching the global minimum is to be already in the global

minimum valley! In addition, because of instability behaviour in the neighbourhood

of a singularity, due to limited numerical precision, random jumps in the weight space

– equivalent to injecting noise to the weights in conventional back-propagation – may

divert the learning trajectory away from the global minimum (as well as towards the

global minimum when trapped in a local one. Hence, the term paradox of global con-

vergence).

A novel approach to the optimisation of learning machines such as the ffnn has recently
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appeared under the name of Support Vector Machines(svm) [Vapnik and Chervonenkis, 1974],

[Vapnik, 1979], [Vapnik, 1995]. svm are based on the previous work by Vapnik and

Chervonenkis on statistical learning theory and the VC dimension, [Vapnik and Lerner, 1963]

and [Vapnik and Chervonenkis, 1964]. svm work by minimising the upper bound of the

generalisation error of the learning machine, instead of the sample error. In this way,

svm do not have to face bias-variance trade-off, [Geman and Bienenstock, 1992], like

conventional optimisation methods.

Appendix C contains a useful introduction to the concepts of VC dimension. Section

C.6 in Appendix C describes svm at a greater length. A very informative tutorial on

svm is given by [Burges, 1998].

4.4.3 Local Minima

As we have seen in the previous section, one of the problems haunting back-propagation

is the existence of minima, maxima and saddle points on the error surface defined by

the error function, E(W), in the weight space, W. This complicated topology of the

error terrain makes it difficult to find the one (global) minimum corresponding to the

lowest or, even, zero error.

For networks17 having a single layer of computational units, linear activation func-

tions at their outputs and employing a sum-of-squares error function, E(W) will be a

quadratic polynomial on the weights and, therefore, the error surface will have a general

multi-dimensional parabolic form with a single minimum which can be easily reached.

However, for the general ffnn architecture the error function will be a highly non-

linear function of the weights suffering all the pathologies mentioned earlier.

Essentially, the presence of local minima derives from two different reasons, as discussed

in [Bianchini et al., 1998]:

• spurious local minima may arise because of unsuitable choice of activation and

error functions,

• structural local minima may arise because of the nature of the particular problem.

This means that some of these local minima may be eliminated with the right choice

of neural network topology and activation and error functions. However, those minima

inherent in the problem at hand can not be rid of unless an appropriate reconstruction

of the training set or, even, a reformulation of the learning problem is adopted.

17 For example, the perceptron.
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4.4.4 Premature Neuron Saturation

It has been shown that optimal solutions to the problem of training a ffnn for a

particular data set are obtained when the majority of the hidden layer units operates

predominantly in the linear region of their sigmoid activation, with small excursions

into the nonlinear region, [Burrows and Niranjan, 1993].

Premature neuron saturation refers to situations where the input signals to the hidden

layer nodes are so high that the neurons are forced to produce an output response very

close to the upper bound of their sigmoid activation. Saturation causes the neurons to

lose their sensitivity to input signals, the propagation of information is blocked and,

thus, sub-optimal solutions arise.

Saturation has been mainly attributed to learning with high initial weight values. How-

ever, the input signal to a hidden layer neuron is a summation of the product of a weight

value and previous layer outputs over all the previous layer units. Therefore, saturation

may also arise when the number of units in each layer is large, for example in networks

with a lot of inputs (input dimensions).

A possible solution to the problem of premature neuron saturation would be to initialise

the weights to some very small values and restrict them – during training – within some

ranges which will ensure that saturation will not occur. This solution is based on the

assumption that if there is a solution to the problem at hand, then this will, most likely,

be found there where saturation does not occur; e.g. in the region of small weights.

This is partly true because some weights might have large values without necessarily

causing the majority of neurons in a network to saturate. Therefore, the solution may

also be found in regions where some weights are small and some are large.

Questions such as how many weights should be restricted, which weights and in what

ranges should then be answered in order to ensure that optimal solutions are not ex-

cluded a priori. The answer to these questions, however, is specific to the neural

network architecture chosen and the training data available. Some people might be

tempted to introduce a random element in determining these answers with a distri-

bution depending on network architecture and training data. Although such methods

may be effective at times, they should be used with skepticism because they introduce

more uncertainty, in addition to that of gradient descent, and leave open questions.

Moreover, restricting the learning process in such a way, would constitute a serious

deviation from the doctrines and meaning of connectionism.

Regularisation, [Bishop, 1995, p. 15, 338], is a technique for controlling the smoothness
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of a mapping function (the output of a neural network, for example). One way to achieve

this is by controlling the change of the weights in a neural network. Thus, instead of

updating weight values uniformly by using a universal weight update rule depending

only on the error value, regularisation theory suggests the use of a functional which

depends on the weight value as well so that smaller weights are updated differently

than larger ones.

Weight decay, a subset of regularisation methods, penalises large weights. Other

regularization methods may involve not only the weights but various derivatives of the

output function.

4.5 Issues of parallelism and hardware implementation

4.5.1 Parallelism

An efficient parallel implementation of any computational task will have to take into

account not only how well the task can be partitioned and assigned to the different

processors (load balancing) but also the communication requirements between the var-

ious processes and processors. The latter is important from a practical point of view

because, on the one hand, the bandwidth of the communication channels is limited and,

on the other hand, the communication process itself consumes computing power (e.g.

routing, error detection and correction, etc.), thus slowing down the overall effort. As a

result, the number of parallel processes is limited by the communication overhead they

will introduce and, therefore, can not be increased unconditionally.

The basic processing element of a ffnn is the neuron which, for a fully connected

network, communicates with all the neurons of the previous and next layers. Its task

is simple and basic but requires a lot of information passing:

• In forward propagation mode, it is required to compute a sum of products using

the outputs of all the neurons from the previous layer, pass it through a non-

linearity (activation function) and fan-out the end result to all the neurons of the

next layer.

• In back-propagation mode, it is required to compute a sum of products using the

derivatives of the output of the activation function from all the neurons of the

next layer and distribute the end result to all the neurons of the previous layer.

The most natural partitioning of the problem of training a ffnn for parallelised im-

plementation is at the level of the neuron: each neuron belonging to the same layer
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be assigned to a separate processor. Considering the simplicity of the neuron’s task

and the fact that the number of neurons in a given layer can be large, this scheme is,

definitely, not practical as it would require a large number of processors doing trivial

computations.

An alternative scheme which takes advantage of the fact that modern processors are

quite powerful, is to group several neurons together and assign each group to one pro-

cessor, [Kontoravdis et al., 1992]. In this way a reduction in the number of processors

as well as a reduction in processor-to-processor communication is achieved. The cost is

that each processor being an essentially von-Neumann machine operates sequentially;

therefore, the amount of parallelism is reduced too.

Undoubtedly, the fine-grain parallelism which is inherent in the nature of a ffnn does

not map very well onto current (parallel) computer architectures and may be inefficient

in practice due to excessive communication overhead, [Misra, 1992]. This is especially

true if the classical approach of parallelism at the neuronal level is taken.

As an alternative, ffnn are engineered as a mixture of parallel and sequential

computational schemes. On the same token, some people are expressing the view that

as the computing power of modern processors increases, sequential implementations

may be the most viable and optimal choice after all.

We believe that parallelism is a valuable feature of neural network models and should be

retained in practical implementations, with any modifications and adjustments deemed

necessary. Not only because the immense explosion in the development of conventional

hardware of the last ten to twenty years18 will soon subside in the face of the limit of

atomic size, but also because without parallelism at the hardware level, significant ad-

vantages gained by adopting a connectionist approach such as fault tolerance, scalability

and hardware extendibility are lost.

As it has already been mentioned in section 4.4, artificial neural networks have been

used successfully on small pattern recognition problems but, in larger applications,

scalability problems will occur, [Zell et al., 1993]. In biology (e.g. brain physiology),

these same problems seem to be solved by the development of modular structures (see

chapter 5) of which parallelism is a key element.

Parallelism and modularisation at the hardware level are also crucial for building ex-

tendible systems where new modules can be added without fundamental changes to

18 The statement that circuit density – the capacity of semiconductors – doubles every 18 months

is known as Moore’s Law.
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the behaviour of the other modules – something that is very difficult with the current,

non-expandable architectures, [Murre, 1993].

This last point leads us to the next section where practical problems of hardware

implementation of neural networks are discussed.

4.5.2 Hardware implementation constraints

As neural network models are growing more complex and their applications are be-

coming more sophisticated, the plausibility and ease of hardware implementation are

crucial in their successful utilisation in non-trivial tasks and in environments outside

the computer laboratory. In addition, neural network hardware offers the high-speed

circuits necessary for real-time applications.

The main factor restricting the successful and large scale implementation of neural

networks in silicon is, perhaps, the large number of fan-in and fan-out connections

per neuronal unit which results in increased complexity of the circuit design, excessive

current supply and the prohibitively large chip area required for the calculation of the

huge sums of products involved.

In addition, analogue neural network hardware designs suffer from low precision compu-

tations, dependent on external factors such as temperature and power supply stability,

[Hecht-Nielsen, 1990, p.273].

For a review of hardware neural networks see [Lindsey and Lindblad, 1994]. Chap-

ter 8 of [Hecht-Nielsen, 1990] offers an extensive analysis of hardware neural network

implementation.

4.6 The non-explicit nature of learning

Current neural network architectures, and in particular the feed-forward neural net-

works, are conveniently described in terms of a black box model. The large number of

weights, the non-linearities applied to the output of each neuron and the presence of

one or more hidden layers make it very difficult to observe the intermediate steps of

the learning process in the level of weights and neurons.

Firstly, the advantages derived from the simplicity and convenience offered by the

black box approach are nullified when greater interference with the learning process is

desirable.

Secondly, without some form of explanation capability, the full potential of trained
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neural networks may not be realised. The problem is an inherent inability to explain

in a comprehensible form, the process by which a given decision or output generated by

a ffnn has been reached.

Thirdly, the hopes of many biologists that neural networks will constitute a promising

method which would help them understand the biological neural system itself are now

very remote possibilities.

Finally, it is important to note that if the learning process was more explicit and

better understood we could have been more efficient and effective in reaching a good

solution. The discrepancy between expected and desired neural network outputs –

an utterly simplistic indicator of performance – is, currently, the main guide of the

optimisation process. Therefore, although some results are obtained when the error

surface is relatively simple, in general, total success can not be guaranteed (as it was

discussed in section 4.4).

For neural networks to enhance their overall utility as learning and generalisation tools,

it is highly desirable if not essential that an “explanation” capability becomes an inte-

gral part of their functionality. Such a capability may be realised with rule-extraction:

“Given a trained neural network and the examples used to train it, produce a concise

and accurate symbolic description of the network”, [Craven and Shavlik, 1994].

4.7 Summary

In this chapter some of the most important problems associated with feed forward

neural networks have been examined. A summary of this critique follows:

1. Linear classifiers such as the perceptron, the predecessor of the multi-layer ffnn,

are able to implement discriminant functions which are only linear. Classifiers

employing the small class of linear functions (decision planes) are not powerful

enough to be used in a wide variety of applications. In fact, Minsky and Papert

managed to pause research in the field of neural networks by demonstrating the

inability of the perceptron to learn the xor function. More powerful classifiers

may be build, at the cost of increased complexity, by either increasing the order

of the perceptron or using a non-linear neural network architecture such as the

multi-layer ffnn.

2. The utilitarian value of Kolmogorov’s theorem of representing functions in terms

of a finite superposition of compositions of functions of one variable is minimal.

On the one hand, these one variable functions are highly non-smooth and virtually
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unknown, [Poggio and Girosi, 1989]. On the other hand, this theorem does not

offer any suggestions as to how such a decomposition may be implemented in

practice. Consequently, further research in the field has been directed towards

approximate rather than exact representations with all the disadvantages that

this implies. Feed forward neural networks were the fruit of this research.

3. Studies of the computational complexity of training ffnn suggest that the prob-

lem of finding the set of weights for which the network produces the correct output

for all training examples – e.g. the loading problem – is NP-hard or NP-complete

depending on the network topology and activation functions. In theory, this

means that it is computationally expensive, if not impossible, to find the set of

weights corresponding to correct network behaviour. In practice, however, the

implications of these results are not as dramatic because more often than not

users are satisfied more with approximate rather than exact solutions19.

4. Learning as optimisation has greatly simplified the problem of training artificial

neural networks by transforming it into purely mathematical terms. However,

it has also revealed many problems such as local minima, the multi-modality,

complexity and dimensionality of the error surface, the exponential growth of the

search space, premature neuron saturation, etc. These problems become worse

as the number of adjustable network parameters and the complexity of training

data increase.

5. The parallel and hardware implementation of a monolithic ffnn is very difficult

in practice because of excessive communication requirements and the fine-grain

parallelism inherent in its nature. A parallel or hardware implementation of a

connectionist system may only be feasible after extensive modularisation and

adoption of a more coarse-grain architecture.

6. The non-explicit nature of learning which currently characterises neural net-

work modelled on the black-box approach removes virtually any possibility for an

explanation capability in trained neural networks. Additionally, if the learning

process was more explicit and better understood, reaching a good solution could

have been more efficient and effective. Modularisation is one way to effect the

extraction of high-level information from neural networks.

19 Keep in mind that exact learning (see memorisation) of the training set does not imply correct

behaviour when the entire problem distribution is presented.
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chapter V

ffnn entities

Amethodology for the decomposition of a single FFNN which allows for
dealing fast and effectively with high-dimensional data without degra-
dation of its approximation and generalisation abilities – is herein dis-
cussed.

5.1 Introduction

As it has been discussed in chapter 4, multi-layer feed forward neural networks in-

variably suffer a number of problems when applied to tasks involving high-dimensional

data:

• premature neuron saturation,

• the intractability of the loading problem,

• the exponential growth of the search space as its dimensions increase,

• local minima, complex error surfaces and the inability of the back-propagation

algorithm to deal with them effectively.

In addition, current neural network models do not favour practical and efficient paral-

lelisation due to their fine-grain structure. Hardware implementation of neural networks

is also difficult and expensive, especially when the number of weights is large. Finally,

the larger the number of weights is, the more difficult it is to observe the intermediate

steps in the learning process or to explain in a comprehensible form, the process by

which a given decision or output has been reached.

In the past, several training algorithms and procedures as well as network architectures,

neuronal models, error and activation functions, etc. have been proposed as solutions

to some or all of these problems. Naturally, they have their advantages as well as

51
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their side effects and disadvantages but they do not pose as generalised solutions1;

their efficacy is specific to the application domain and the nature of the problem at

hand. Simply put, most of these solutions are designed to fine-tune neural networks to

work optimally within a limited domain rather than develop techniques for both better

performance as well as wider applicability using simpler procedures.

In our opinion, and in line to the underlying concepts of connectionism, the learning

process should remain simple and without a lot of interference. Thus, in order to

address the issue of scaling, one has to rely on the existing basic building blocks; we

need to learn how to combine small networks and place them under the control of other

networks.

The modular neural network architectures developed over the last years are based on

the philosophy that the computational benefits gained from the vast connectivity of

neuronal elements can be improved, when the current, traditionally solid architecture

is extended to a kind of meta neural network where connectivity exists at higher levels,

e.g. between networks, networks of networks and so on.

In this chapter, a novel modular neural network architecture, called an entity of ffnn,

is introduced. Its design has been motivated by the fact that although existing mod-

ular networks are successful in addressing issues of generalisation, specialisation and

confidence of prediction, all the problems associated with high-dimensional data and

scaling of networks, basically, remain unanswered.

In section 5.2, the main reasons for adopting modular connectionist models are identi-

fied. Section 5.3 reviews previous work in the field of modular neural networks. The

family of ffnn entities is formally described in section 5.4. An account of how to create

and train the entities is also given therein.

In section 5.6, it is proved that ffnn entities are universal function approximators.

Section 5.7 investigates the time benefits obtained by replacement of a single ffnn

with an entity of ffnn.

Finally, section 5.8 outlines all the benefits gained by adopting the proposed architec-

ture of the entities.

1 The last 50 years, technology and software development have delivered plenty of such solutions

with localised scope. Ephemeral computer languages, user interfaces, enhanced hardware with added

features: a Sisyphean effort to patch up the notoriously flawed von Neumann computer architecture.

Intelligent gear-boxes, put the engine left, right and center: a Sisyphean effort to patch up the notori-

ously inefficient internal combustion engine.
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5.2 Motivation

The motivation behind substituting the monolithic neural architectures (and, specifi-

cally, the ffnn model) with equivalent modular constructions emanates from the fol-

lowing facts and observations:

• Partitioning a task into smaller sub-tasks is a very good way to reduce complexity

without compromising the fitness of the solution. The study of human information

processing systems reveals that task decomposition is the way which humans deal

with NP-completeness. It is, probably, the most natural and common problem

solving technique known to man.

On the same token, breaking a huge and complicated structure (such as a solid

neural network) into an entity of smaller structures (the modular network) will

most definitely reduce the complexity of the whole system. Network decomposi-

tion also promotes coarse-grain parallelism, and makes the learning process more

explicit.

• A taxonomy of the components of neural network architectures may be defined

by saying that the neuron is the finest level of classification, a layer is a coarser

level and a network is a still coarser level. Solid neural networks are typically

designed to be modular at the neuronal level whereas entities of neural networks

are designed to be modular at the level of networks. Thus, this design philosophy

is just a natural extension of already existing connectionist models.

• It seems plausible to neural network researchers, for example [Freeman, 1991],

and neurophysiologists, for example [Lavine, 1983] and [MacGregor, 1987], that:

“ ... the brain is composed of many different parallel, distributed sys-

tem, performing well defined functions [...] To address the issue of scal-

ing, we may need to learn how to combine small networks and to place

them under the control of other networks.” [Freeman, 1991, pp.29-30]

Thus, the brain is not only characterised by a massively connected network of

neurons but also by the existence of different computational systems operating

at different levels of abstraction and specialising at different functions.
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5.3 Modular neural architectures: state of the art

5.3.1 Committees of networks

The method of combining several neural networks together in something called a

committee of networks, and obtaining the overall response as the average of the out-

put of the individual networks has been suggested in [Perrone and Cooper, 1993] and

[Perrone, 1994].

Mainly, this method aims at overcoming the problems associated with the usual practice

of training a network several times (or, alternatively, training a large number of different

networks) with the same data but with different initial conditions (initial weight values)

and/or different network topology and then selecting the network with the lowest sample

error.

On the one hand, following these practices is not only inefficient because the compu-

tational effort spent in the training of the rejected networks is wasted – do not forget

that only one network will be selected. On the other hand, selecting a network using

the criterion of the lowest sample error can not really guarantee a good network per-

formance with unknown data (see appendix C on page 175 for more details on issues

regarding sample error and the confidence of prediction).

Theoretically, the mean squared error of a committee of N networks can be reduced by

a factor of N compared to the average error of the networks if acting independently.

This result is based on the assumption that the errors of the individual networks are

uncorrelated [Bishop, 1995]. In practice, however and for obvious reasons, this assump-

tion rarely holds and, thus, error reduction is not as dramatic. None-the-less, the error

of the committee is guaranteed (see for example [Bishop, 1995, p.366]) to be lower than

the average error of the individual networks acting independently.

It is obvious that, although, the idea behind the committee of networks is successful in

producing a modular connectionist network with enhanced generalisation and approxi-

mation capabilities, fails to address the problems of scaling and curse of dimensionality.

In fact, the effect of these problems is more evident when the number of trained neural

networks increases.

5.3.2 Other ensemble methods: bagging and boosting

In this section we will describe some more attempts to implement modular connec-

tionist models based on the idea of using the combined output of a system of neural
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networks rather than the output of the best neural network acting individually.

This class of methods for combining neural networks proceeds a step further than the

committee of networks by training each of the classifiers with a different version of the

training data. These different versions are produced by uniformly resampling with re-

placement the original training set – a procedure known as bootstrapping, [Efron, 1982].

Bagging (i.e. boostrap aggregating) is structurally equivalent to the committees of

networks. Their difference is that instead of each network being trained with the same

data set (the case of the committees of networks), it is trained with one of the different

versions of the training set.

Boosting is a more sophisticated version of bagging. In general, for each network in

the ensemble, a weight value is assigned to each training vector. The purpose of this

weighting scheme is to focus attention to the training vectors associated with high error

by decreasing their weight value.

5.3.3 Mixtures of Experts

A mixture of experts is a modular connectionist architecture which learns to partition

a task into two or more functionally independent tasks and allocates distinct networks

to learn each task, [Jacobs et al., 1991]. The assumption here is that, after training,

the experts will compute different functions which are useful in different regions of the

input space.

The architecture consists of two types of networks: the experts and the gating networks.

Basically, the gating network is trained to select the most appropriate neural network –

according to previous performance – from a pool of previously trained candidates (the

experts).

A typical example of a simplified application of the mixture of experts model is the

absolute value function:

f(x) =

−x if x < 0

x if x ≥ 0

This function can be decomposed in two sub-functions, as it is obvious from the equation

above, each relevant to a different region of the input space (e.g. less or greater than

zero). After training the two experts to compute their assigned tasks (using standard

neural network training practices), we need another network (the gate) to choose the

output of only one of the two experts for any given input. This gating network operates

on a winner-takes-all principle because there exists only one expert for a given region



56 chapter v

of the input space.

The above problem is quite simple in the sense that the decomposition of the main

function is obvious and that the domain of each sub-function is clear and can be revealed

by inspection. However, it is not often the case that one is allowed the “convenience”

of domain knowledge: when dealing with high-dimensional data a priori decomposition

of a task might be difficult as well as the boundaries between the different sub-tasks

are, rarely, explicitly marked in the training data.

The main benefit obtained from a mixture of experts model is that it performs a kind

of task decomposition, induced by the competition at the level of the gating network.

Moreover, the process of allocating the experts to subtasks is made part of the learning

problem.

However, although networks based on the mixture of experts philosophy implement and

utilise some kind of task decomposition, promote a framework for better generalisation

and incorporate, successfully, properties unknown to the supervised neural networks

paradigm such as specialisation and competitive learning, they are still vulnerable to

problems induced by scaling and the curse of dimensionality.

Finally, another model of modular neural networks, the recursively-defined mixture of

experts in [Jordan and Jacobs, 1992] constitutes just a variation on the theme of the

mixture of experts. Its main novelty is that each of the experts can now be a mixture

of experts network itself.

5.3.4 Summary and margins for improvement

In the previous section, a review of the current state-of-the-art in the area of modular

neural networks was presented. The simplest approach to designing such systems is the

committee of networks, where several networks are trained on the same data but with

different initial conditions and configuration. The output of the committee is then the

average of all the networks which is guaranteed to be at least lower than the average

error of the individual networks acting independently.

The objective behind the idea of combining several networks in a committee is to

improve the generalisation ability of the system, make it more stable and less susceptible

to the disposition of single networks.

Other examples in this direction are boosting and bagging which use constructions

which are structurally equivalent to the committees of networks. Each network is

trained with a different version of the data set produced using the method of uniform

resampling with replacement – e.g. bootstrapping.
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Mixtures of experts, on the other hand, implement a more complex modularisation ar-

chitecture which utilises the ideas of competitive learning and specialisation in the hope

to achieve some kind of task decomposition. Again, mixtures of experts are concentrat-

ing on improving the generalisation ability of the resultant networks. The benefits from

such an architecture are, however, doubtful as the boundaries between the different sub-

tasks are rarely explicitly marked in the training data and become more obscure as the

number of data dimensions increases.

It is evident that research in the area of modular neural networks concentrates in

improving generalisation ability but neglects to address the scaling problems due

to the curse of dimensionality. In fact, the current modular architectures suffer more

from scaling problems than single neural networks. This is so because ensemble methods

such as the committees of networks require that not only one but many single ffnn

need to be trained with the same high-dimensional data. On the other hand, mixtures of

experts will find it increasingly difficult to perform task decomposition on the training

data, as its dimensions increase.

Thus, there is a need to consider not only issues of improving the generalisation ability

of our neural network models but also, at the same time, to make sure that scaling up

such networks when used with high-dimensional data will not render them unusable.

Scaling problems and the curse of dimensionality should be considered when designing

alternative neural network architectures. The research described in this thesis is fol-

lowing this direction and, therefore, attempting to fill a gap by considering a problem

which, we feel, has been somewhat neglected.

5.4 FFNN entities

5.4.1 Introduction

This section is concerned with presenting practical and theoretical design issues rel-

evant to the construction of ffnn entities. Questions regarding the nature, type and

complexity of the underlying components of the entities as well as interconnection and

training schemes, will be answered here.

ffnn entities are designed along the same principles as those of ordinary, monolithic

neural networks. After all they, too, belong to the family of connectionist systems;

their structure can be described using the same taxonomy where units belong to the

finest level, layers to a coarser level and networks to a still coarser level of classification.
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Thus, an ffnn entity is composed of not only simple neurons, like the case of single

ffnn, but also of units of a more complex character and behaviour. Small neural

networks, networks of neural networks (e.g. other ffnn entities) or their combinations

can be used in the construction of an entity. The type of underlying entity units needs

not be restricted to neuronal. After all what is a neural network (ffnn) other than a

function on its inputs which holds the universal function approximation property and

whose coefficients need to be finalised through training? In this respect, the family of

polynomials are known to be universal function approximator too and, hence, can be

used in the construction of an entity.

Obviously, the choice of an entity’s basic components is very wide. Whether this is a

good thing or just a feature which adds unnecessary complexity to the whole process

is an open question. It could be that the choice of components makes little difference

to the generalisation ability of the entity and that is only relevant to the nature of

the problem at hand. Something similar happens when selecting the type of activation

function in the case of neurons. It is known that it should be a non-linear function

but whether it should be a logistic, hyperbolic or something else, really depends on

the properties of the specific problem’s data. For the sake of clarity and simplicity

of notation and because of time constraints, this thesis is only concerned with single

output entities which are composed of single ffnns.

The units of an entity may be layered and linked with connections of adjustable strength

just like ordinary neurons in the case of single ffnn. The connectivity of the elements

of an entity, however, is not as strict as that of single ffnn. The restrictions imposed

to the connectivity of neurons by back-propagation, in the case of single ffnn, only

apply to entities whose underlying components are linked with connections of adjustable

strength and, thus, will require back-propagation. The existence, however, of adjustable

connections between entity units is optional. Thus, the only restriction that governs

the topology of these entities is to ensure the absence of any feedback connections. The

reason for this is that recurrent neural networks are more complex to train and, thus,

were avoided.

Optimising the weights of the neural networks composing the entity or the weights

connecting the various entity units is essentially based on gradient descent: back-

propagation is used for the former and a modified, generalised, version for the latter.

Training an entity is not complicated provided that the many networks existing at

different levels are dealt with following a certain sequence so as to avoid any deadlocks.
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A possible categorisation criterion for the entities is their topology2 and the training

targets of each entity component. These two criteria were used to identify three different

classes of entities, namely classes 1, 2 and 3. The symbols C1, C2 and C3 shall denote

the three entity classes throughout this chapter. The symbols C1, C2 and C3 shall denote
the family of functions implemented by each of the entity classes.

Class 1 entities follow a partially connected configuration where the units of a given

layer (including the inputs) may send their output to any unit which belongs to a layer

closer to the output than themselves – e.g. feed-forward signal propagation. Any of

the inputs may be sent directly to any non-input layer units as well as it is possible to

have connections between units of non-adjacent layers

Class 2 entities are based on a cascaded architecture. Their structure is more regular –

a feature which allows the use of some form of feedback. A class 3 entity is a refinement

of class 2 with the main inter-connection theme, that of cascaded architecture, being

inherited but with training being slightly different.

In effect, the difference between classes 1 and 2 is one between unordered and ordered,

unstructured and structured topology. Whereas, the difference between classes 1 & 2

and 3 is one of different, more refined training targets. It is interesting to note that

the idea of refined training targets, which could have led to a fourth entity class, could

not have been applied to C1 without imposing serious constraints on its architecture

and losing the generality offered by its unstructured topology. Thus, the design and

implementation of a fourth entity class was not attempted because it was considered

to be time consuming and would not add significantly to the novelty of this work. The

three entity classes will be described in more detail in the following sections.

5.4.2 Class 1 FFNN entities: formalism

Definition 5.1 The family of all possible transfer functions implemented by a C1 en-

tity with n inputs, x = {x1, x2, . . . , xn}, is:

Cn
1 = { fmn : IRn → IR | f1|x|(x) = g|u1|+|v1|(u1 ∪ v1)

where, ui =
{
f j|uj |+|vj |(uj ∪ vj)

}i+s

j=i+1

vi ⊂ {∅, x1, x2, . . .@!}, gi ∈ Gn and f i∅ = ∅ }

Gi represents the family of functions implemented by a feed forward neural network

with i inputs according to definition 3.4 on page 23. ui is a set of s elements which

2 Another criterion is the type of their underlying components. Such taxonomy has not been

attempted though this possibility may be investigated in the future.
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can themselves be either smaller entities (e.g. f j|uj |+|vj |(uj ∪ vj)) or just plain input

variables (e.g. xi). Each entity in the above definition is characterised by a unique

identification number – the “m” in fmn – and the number of its inputs – the “n” in

fmn .
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Figure 5.1: A simple C3
1 entity implementation

Example 5.1 Below is the specification of a Cn
1 implementation, f53 (x1, x2, x3), which

consists of five ffnn: N1, N2, N3, N4 and N5:

• N1: inputs are X1 = {x1, x2}, output is O1 = f12 (x1, x2),

• N2: inputs are X2 = {x2, x3}, output is O2 = f22 (x2, x3),

• N3: inputs are X3 = {x2, x3, O1}, output is O3 = f33 (x2, x3, f
5
2 (x1, x2)),

• N4: inputs are X4 = {x1, O2}, output is O4 = f42 (x1, f
3
3 (x2, x3, f

5
2 (x1, x2))),

• N5: inputs are X5 = {x1, O3, O4}, output is O5, the final output.

The implemented neural network transfer function O5 = f53 (x1, x2, x3) is:

O5 = f53 (x1, x2, x3) = g3(x1, O3, O4)

= g3(x1, g3(x2, x3, O1), g2(x1, O2))

= g3(x1, g3(x2, x3, g2(x1, x2)), g2(x1, g2(x2, x3)))

where, f53 ∈ C3
1 and gi ∈ Gi.
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5.4.3 Class 1 FFNN entities: construction

Before training a C1 entity, its architecture, allocation of the set of the input variables

to the entity units and connectivity scheme have to be decided.

Class 1 entities conform to a not-necessarily fully connected configuration where a

given unit may send its output to any other unit which does not, directly or indirectly,

sends its output back to the first unit. This means that the signals must not flow

backwards – no feedback connections are allowed. The reasons for this are twofold:

firstly, the addition of feedback might seriously destabilise the overall process. Secondly,

the training of recurrent neural networks is complex and more difficult than that of

feed-forward models.

In order to make it easier to avoid feedback connections, it is preferable that in any

entity description or diagram, the units are grouped in layers – in the same way as

neurons are grouped within single ffnn. This convention will also make it easier to

determine the sequence in which entity units should be trained. For example, in the

entity implementation of figure 5.2, it is clear that training must take place in three

steps:

1. N1 and N2,

2. N3 and N4,

3. N5.

In a larger implementation, the benefits arising from the clarity provided by adopting

such convention would have been much more obvious. However, the convention of using

“layers” is not strictly necessary as the layers in an entity can be identified by a simple

partial sort algorithm.

Any of the data inputs can be sent directly to any non-input units as well as it is

possible to have connections between units of non-adjacent layers. Apart from the

requirements set above, there is no strict methodology to be followed in determining

the final architecture and connectivity scheme.

The allocation of the set of the input variables to the entity units is also not strict.

Unless there is prior knowledge about the problem domain favouring3 a particular

grouping and allocation to the various ffnn, each entity unit may be allocated as

many input variables as it is necessary. It is also possible that any given input variable

3 Remember the notion of task decomposition in section 5.3.3 on page 55.



62 chapter v

may be allocated to many input and non-input units (as demonstrated in example 5.1

and shown in figure 5.1).

Another variation of the basic class 1 entity model is when the various entity units

are linked by connections of adjustable strength – something equivalent to the weights

between neurons of single ffnn. This possibility will be discussed in section 5.4.5.

5.4.4 Class 1 FFNN entities: training

Training a C1 entity is straightforward. Firstly, all the ffnn which do not receive any

input from other ffnn will be trained with all the vectors contained in the training

set, the exemplars. Of course, each ffnn will only consider those input variables which

have been allocated to it and not any others.

Secondly, we will train those ffnn receiving inputs from the training set directly and/or

from already trained ffnn. Notice that the target output to every ffnn in the entity

is identical to the target output defined in the training set.

5.4.5 Class 1 FFNN entities with adjustable connections

An additional, though not necessary, step towards optimising a C1 entity is to introduce

adjustable strength connections between each individual ffnn. Figure 5.2 shows the

ffnn entity of example 5.1 with added adjustable connections.

As soon as the training of each individual ffnn, is completed in the usual manner,

the connections at the level of the entity will be adjusted using gradient descent and

back-propagation. This optimisation procedure is done in exactly the same way as it

would have been done if we were dealing with a single ffnn.

There are, however, two structural differences which call for minor modifications to the

back-propagation algorithm:

1. The architecture of the entity is not as regular as that of a fully connected ffnn.

For example, connections between units of non-adjacent layers are allowed as well

as full connectivity is not a requirement.

2. All the units (neurons) of a ffnn usually employ the same activation function

whereas each unit (ffnn) in an entity implements a different function. This

means that the derivatives of the transfer functions of each ffnn, with respect

to its inputs, must be calculated individually. The formula for the derivative of

the ffnn transfer function is given in section 5.4.6.
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In appendix A on page 169 the equations of the back-propagation algorithm for a single

ffnn are derived. Equation A-9 describes how the update of the weight connecting

units i and j is done. This weight update scheme also holds when training the entity.

The term δlj was defined in equation A-8 as:

δlj =

(Tj − Yj) · σlj
′
(Al

j(y
l−1)) if l is the output layer, L,

σlj
′
(Al

j(y
l−1)) ·

∑u(l+1)
k=1 δl+1

k wl+1
kj if l is hidden layer, 1 < l < L.
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Figure 5.2: A C3
1 entity with adjustable connections between individual ffnn

The only modifications necessary to the above equation in order to adapt it to the

entities’ model are the following:

1. The term σlj
′
(Al

j(y
l−1)), e.g. the derivative of the neuronal activation function,

should now be replaced by the derivative of the jth ffnn unit in the lth layer,

∇inplj
F l
j(inp

l
j
). The vector inpl

j
holds all the inputs to jth ffnn of the lth layer.

2. Also, the index k in the sum
∑u(l+1)

k=1 δl+1
k wl+1

kj should now be instantiated over

all the items of inpl
j
.

Summarising, when dealing with ffnn entities and entities of ffnn entities the indi-

vidual units are trained first using standard back-propagation. If there are connections
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of adjustable strength between the various units of the entity, then these may be op-

timised using back-propagation with the afore-mentioned modifications. The same

modifications apply when dealing with entities of ffnn entities with the proviso that

∇inplj
F l
j(inp

l
j
) is the derivative of each of the ffnn entities making up the bigger entity.

5.4.6 The derivative of the FFNN transfer function

We will now proceed to calculate the general expression for the derivative of the

transfer function of a ffnn. The results in this section, although derived independently,

are related to the work of other researchers in the field of automatic and computational

differentiation such as [Lucas, 1997] and [Griewank, 1989].

Recall that the transfer function, F (·), of a single-output ffnn with L layers is given

by:

F (x) = σL1 (A
L
1 (y

L−1)) (5.1)

where x is the input vector to the neural network (of L layers) and Al
i(·) and σli(·) are

the affine transform and activation function associated with the ith unit (neuron) of

the lth layer.

In general, yl is a vector containing the outputs of each neuron of the lth layer:

yl =


σl1(A

l
1(y

l−1))

σl2(A
l
2(y

l−1))
...

σlu(l)(A
l
u(l)(y

l−1))


Note that the incoming signal to the input layer units is y0 = x.

The afore-mentioned affine transform associated with the ith unit of the lth layer, is

generally given by:

Al
i(y

l) = bli +wl
i · yl−1 (5.2)

= bli + (wl
i,1 wl

i,2 · · · wl
i,u(l−1)) ·


σl−1
1 (Al

1−1(y
l−2))

σl−1
2 (Al−1

2 (yl−2))
...

σl−1
u(l−1)(A

l−1
u(l−1)(y

l−2))


where, u(l) gives the number of units contained in the lth layer, bli is the bias value of

the ith neuron in the lth layer, wl
i is the ith row of wl – e.g. the matrix holding the
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weights of the lth layer (of u(l) rows and u(l− 1) columns). See section 3.2 on page 20

for more details on notation.

By application of the chain rule to equation 5.1 we get the derivative of the ffnn

transfer function with respect to the input vector, x, as:

∇xF =
dσL1 (A

L
1 (y

L−1))

dAL
1 (y

L−1)
· ∇xA

L
1 (y

L−1) (5.3)

The following shorthand notation shall be used throughout the rest of this section:

gli =
dσli(A

l
i(y

l−1))

dAl
i(y

l−1)
, gl =


gl1

gl2
...

glu(l)

 and, Gl =



gl1 0 0 · · · 0

0 gl2 0 · · · 0

0 0 gl3 · · · 0
...

0 0 0 · · · glu(l)


The calculation of gli is straight forward and specific to the choice of the activation

function σli(·). The calculation of the derivative of the affine transform, Al
i(·), with

respect to the input vector is given below.

By differentiation of equation 5.2 we get:

∇xA
l
i(y

l−1) = wl
i · ∇xy

l−1 (5.4)

and,
∂Al

i

∂xj
= wl

i · ∇xjy
l−1 (5.5)

∇xy
l is defined as follows:


yl1

yl2
...

ylu(l)

 · ( ∂

∂x1

∂

∂x2
· · · ∂

∂xu(1)
) =



∂yl1
∂x1

∂yl1
∂x2

· · · ∂yl1
∂xu(1)

∂yl2
∂x1

∂yl2
∂x2

· · · ∂yl2
∂xu(1)

...
∂yl

u(l)

∂x1

∂yl
u(l)

∂x2
· · ·

∂yl
u(l)

∂xu(1)

 (5.6)

whereas the jth column of the above matrix is:

∇xjy
l =


∂yl1
∂xj

∂yl2
∂xj

...
∂yl3
∂xj

 (5.7)
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By differentiating yli = σli(A
l
i(y

l−1)) with respect to the jth input using the chain rule

we have:
∂yli
∂xj

=
dσli(A

l
i(y

l−1))

dAl
i(y

l−1)
·
∂Al

i(y
l−1)

∂xj
= gli ·wl

i · ∇xjy
l−1 (5.8)

Substituting equation 5.8 back into 5.6 we get:

∇xy
l =


gl1 ·wl

1 · ∇x1y
l−1 gl1 ·wl

1 · ∇x2y
l−1 · · · gl1 ·wl

1 · ∇xu(l)
yl−1

gl2 ·wl
2 · ∇x1y

l−1 gl2 ·wl
2 · ∇x2y

l−1 · · · gl2 ·wl
2 · ∇xu(l)

yl−1

...

glu(l) ·w
l
u(l) ·∇x1y

l−1 glu(l) ·w
l
u(l) ·∇x2y

l−1· · · glu(l) ·w
l
u(l) ·∇xu(l)

yl−1



=


gl1 0 · · · 0

0 gl2 · · · 0
...

0 0 · · · glu(l)

 ·


wl

1

wl
2
...

wl
u(l)

 · (∇x1y
l−1 ∇x2y

l−1 · · · ∇xu(1)
yl−1)

= Gl ·wl · ∇xy
l−1 (5.9)

Substituting equations 5.4 and 5.9 back into equation 5.3 we get:

∇xF = gLi ·wL
i · ∇xy

L−1

= gLi ·wL
i ·GL−1 ·wL−1 · ∇xy

L−2

The final derivative expression can be calculated by iteration until the input layer is

reached. Thus,

∇xF = gL1 ·wL
1 ·GL−1 ·wL−1 ·GL−2 ·wL−2 · · ·G2 ·w2 ·G1 ·w1 ·G0w0∇xy

0

Since y0 = x then ∇xy
0 = 1. In addition, the input layer of ffnn will have unit

weights, e.g. w0 = 1.

Thus, the derivative of the ffnn transfer function becomes:

∇xF = gL1 ·wL
1 ·GL−1 ·wL−1 ·GL−2 ·wL−2 · · ·G2 ·w2 ·G1 ·w1 (5.10)
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5.4.7 Class 2 FFNN entities: formalism

A Class 2 (C2) entity is a special case of the C1 entity, where interconnections between

ffnn are not arbitrary but follow a pattern as shown below.

Firstly, a ffnn (N1) is trained to implement gk(x1, . . .@!, xk) (e.g. using only the first

k inputs to train it to produce the expected output given). In most cases this will not

be sufficient as the output may depend on some other inputs too. Therefore, a second

ffnn (N2) is trained to implement gl−k(xk+1, . . .@!, xl) (e.g. using the next l−k inputs

to train it, again, to produce the expected output given) and so on, until Ni is trained

to implement gn−q(xq+1, . . .@!, xn).

jN

N i+2

Ni+3

Nj-1

Ni+1

Ni

Ni-2
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N 3
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Figure 5.3: A C2 and C3 entity implementation

The next ffnn (Ni+1 in) will be trained with inputs coming from ffnn Ni−1 and Ni,

that means it will attempt to implement g2(gq−p(xp+1, . . .@!, xq), gn−q(xq+1, . . .@!, xn)).

Whereas Ni+2 will be trained with the output of Ni−2 and Ni+1 and so on until the

final ffnn, Nj is reached.

The family of functions implemented by C2 entities, Cn
2 , is recursively defined in terms

of the family of ffnn (Gi) and itself as following:

Definition 5.2

Cn
2 = {fn : IRn → IR | fn(x1, x2, . . .@!, xn) = g2(gk(x1, . . .@!, xk), fn−k(xk+1, . . .@!, xn)),

xi ∈ IR, gi ∈ Gi}
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5.4.8 Class 3 FFNN entities

Class 3 (C3) entities have the same interconnection scheme as C2’s. They differ,

however, in that the training target (output) of every ffnn is not the expected output,

y, as defined in the training data set. Instead, it is a measure (|| · ||) of the discrepancy

between actual and desired outputs of the previous ffnn.

Training commences with N1. It is trained to implement gk(x1, . . .@!, xk) = y. In most

cases, its actual output, o1, after training, will not be exactly y. A measure of this

discrepancy, given by e1 = ||y − o1||, will be used as the training target for the next

ffnn, N2 and so on until we cover all the input variables, xi.

FFNN Input Output Discrepancy

N1 x1 · · ·xk y e1 = ||y − o1||
N2 xk+1 · · ·xl e1 e2 = ||e1 − o2||
N3 xl+1 · · ·xm e2 e3 = ||e2 − o3||
.
..

.

..
.
..

.

..

Ni−2 xo · · ·xp ei−3 ei−2 = ||ei−3 − oi−2||
Ni−1 xp+1 · · ·xq ei−2 ei−1 = ||ei−2 − oi−1||
Ni xq+1 · · ·xn ei−1 ei = ||ei−1 − oi||

Ni+1 oi−1, oi ei−2 ei+1 = ||ei−2 − oi+1||
.
..

.

..
.
..

.

..

Nj−1 oj−2, o2 e1 not required

Nj oj−1, o1 y not required

Table 5.1: Training procedure for the C3 entities

In effect, the only difference between class 2 and 3 entities is their output target during

training. In class 2 entities, this target is just the expected output (y) as defined by the

training set. In class 3, however, the target is a measure of how well the previous ffnn

managed to meet its own target. This feature may be used to estimate the accuracy of

the system’s prediction for individual cases and, further more, to assess the confidence

of prediction of the different FFNN in the entity. Based on these confidence intervals,

fine-tuning of the entity might be possible by replacing those FFNN whose confidence

of prediction is inadequate, with other units of different properties and re-training.

Table 5.1 summarises the training procedure for C3 entities. C3 entities implement the

same transfer functions as those implemented by C2 and belong to the Cn
2 family of

functions.
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5.5 The npnp language and interpreter

5.5.1 Introduction

npnp is a simple language which may be used to create, train and test ffnn and entities

of ffnn. Its creation has been motivated by the need to have a simple but effective

interface to the tedious tasks associated with the preparation of the training and test

data as well as obtaining performance measures for the single ffnn and, in particular,

the entities.

If training and testing a single ffnn is a humdrum activity, then training and testing

an entity consisting of hundreds of ffnn interconnected in many and arbitrary ways

is a formidable and unruly undertaking. Just consider that for every ffnn, one has to

construct the training and data set by looking for all the outputs of previously trained

ffnn and merging them in the right order. Then the same process has to be repeated

for the testing stage. The whole thing might take hours in the end. Additionally, the

probability of making a mistake by forgetting or mixing the inputs to some ffnn is very

high and most likely will go undetected. Most importantly, this procedure has to be

repeated every time some change has to be made in the system, for example changing

the learning rate or the size of some ffnn.

The real challenge, however, to the enthusiast who chooses to train a neural system

manually is when dealing with entities of adjustable connections. As it has already

been mentioned in section 5.4.5, the training of entities with adjustable connections

is completed in two phases. Firstly, each ffnn unit of the entity has to be trained

individually. Secondly, the weights of the connections between these ffnn have to be

adjusted using gradient descent. In effect, it is like training a single ffnn with back-

propagation by hand but with the additional complication of having to calculate the

derivative function of each ffnn unit, which is no longer a simple sigmoid.

Thus, the value and utility of any system which abstracts the process of creating,

training and testing single ffnn and entities to a level of automation where a few

commands suffice to achieve what it might take hours manually, is self-evident. In this

respect, npnp and other similar systems are necessary tools for doing any serious and

methodical experimentation with neural networks. The novelty of npnp lies in its ability

to deal not only with single ffnn but also with the entities.

The npnp system was invaluable to the completion of this work and especially in carrying

out a large number of experiments in order to obtain enough empirical results. Its high-

level nature made it possible to automate the process of training and testing the entities
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as much as possible. It has also helped us to experiment with parallelisation and other

ideas. It does not, by all means, represents the best neural network script language

and interpreter but, at the time of its making, it was considered to provide an adequate

solution to the problem.

The interpreter of npnp and all its utilities are in the public domain and free for anybody

to copy, use and modify. They can be found at:

http://www.soi.city.ac.uk/homes/livantes/Research.html.

A reference guide to the npnp language and interpreter can be found in appendix F on

page 191. A selection of npnp scripts can be found in appendix G on page 223.

5.5.2 Structure

The interpreter of npnp is written in the perl language. The system consists of some

twenty executables (written in the C language) which are spawned by the interpreter,

with appropriate parameters, on parsing the npnp program.

The structure of the npnp system is as follows:

• At the top level is the npnp program which contains instructions and their param-

eters.

• At the next level we find the npnp interpreter. It is entirely written in the perl lan-

guage. This language, unlike C, is ideal for string manipulation but considerably

slower than C. This is the reason why applications like training a ffnn, which

require a lot of processing power and must be efficient and fast, were written in

the C language and constitute the lowest level of the npnp system. The interpreter

parses the npnp program and checks that it is syntactically correct. Then, for each

instruction, a sequence of executables will be invoked with the supplied parame-

ters. For example a program to create an artificial data set is the following:

training data = ProduceAndFormatVectoredDataSet {
NumInputs = 500;

NumOutputs = 1;

NumLines = 60;

Y = Levy6;

Seed = 1974;

}

The interpreter will issue the following simple command:

unix% Levy6 -inputs 500 -lines 60 -seed 1974 -outputs 1
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Note that Levy6 is the executable of a C language program.

Following is a program to calculate the mean square discrepancy between actual

and expected output values contained in the two single column ascii files called

actual and expected,

actual output = OpenFileObject {
Filename = actual;

}
expected output = OpenFileObject {

Filename = expected;

}
error = ColumnsArithmetic {

# mean square error estimate

RowExpr = 0.5 * ((actual output[1] - expected output[1]) ** 2);

ColExpr = average;

OutFileName = error;

}

This program will be translated into:

unix% Merge expected actual | awk ’{print 0.5 * (($1-$2) ** 2)’

| awk ’{ s += $1 } END { print s/NR }’ > error

• The lowest level of the npnp system consists of the C language executables (e.g.

Levy6 etc.) and various built-in Unix commands (e.g. awk). These applications

are small, simple and, more importantly, stand-alone. They are controlled from

the command line. In this way, changes can be made to one of these programs

without affecting the others. Adding features to the npnp system consists of just

writing one or two more of these programs. Had the npnp system consisted of a

single program, maintenance and expansion would have been extremely difficult4.

4 These are some of the advantages of systems built on the principles of emergence and connec-

tionism. These systems are not, of course, restricted only to the field of neural networks. The Unix

operating system is a good example.
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5.6 FFNN entities and the Universal Function Approxi-

mation property

Theorem 5.1 Any ffnn entity implementing the Cn
1 family of functions, defined in

5.1 and whose inputs belong to a compact set K, is uniformly dense on compacta in the

set of all continuous functions in K.

In order to prove the validity of the above theorem we will resort to the Stone-

Weierstrass theorem, [Rudin, 1964], and following a procedure similar to the one we

used to prove that the family of ffnn holds the universal function approximation prop-

erty (see appendix D on page 181 and theorem D.3 therein).

Proof

• Cn
1 is an algebra of functions because it satisfies the three conditions set in defi-

nition D.9, namely:

1. addition: The sum p|x|(x)+h|x|(x) for p|x|, h|x| ∈ C|x|
1 , x ∈ K ⊂ IRn, gi ∈ Gi,

belongs to C|x|
1 since:

p|x|(x) + h|x|(x) = g|u|+|v|(f|u|(u) ∪ v) + g|u′ |+|v′ |(f|u′ |(u
′
) ∪ v

′
)

=

q∑
i=1

βiσ(Ai(f|u|(u) ∪ v)) +

q
′∑

j=1

β
′
jσ(A

′
j(f|u′ |(u

′
) ∪ v

′
))

=

q+q
′∑

k=1

γkσ(A
′′
k(f|u′′ |(u

′′
) ∪ v

′′
))

2. multiplication: The product p|x|(x) · h|x|(x) for p|x|, h|x| ∈ C|x|
1 , belongs to

C|x|
1 since:

p|x|(x) · h|x|(x) = g|u|+|v|(f|u|(u) ∪ v) · g|u′ |+|v′ |(f|u′ |(u
′
) ∪ v

′
)

=

( q∑
i=1

βiσ(Ai(f|u|(u) ∪ v))

)
·
( q

′∑
j=1

β
′
jσ(A

′
j(f|u′ |(u

′
) ∪ v

′
))

)

=

q×q
′∑

i,j

βiβ
′
jσ(Ai(f|u|(u) ∪ v))σ(A

′
j(f|u′ |(u

′
) ∪ v

′
))

Here, σ is the “cosine squasher” as suggested by [Gallant and White, 1992].

See also the relevant sections in appendix D on page 181 and, in particular,

equation D-2.
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3. scalar multiplication: The product α · p|x|(x), for p|x| ∈ C|x|
1 , and α scalar,

belongs to Cn
1 since:

αg|u|+|v|(f|u|(u)∪ v) = α

q∑
i=1

βiσ(Ai(f|u|(u)∪ v)) =

q∑
i=1

β
′
iσ(Ai(f|u|(u)∪ v))

• Cn
1 separates points on K:

∀x1,x2 ∈ K;x1 ̸= x2 ∃ f ∈ Cn
1 | f|x1|(x1) ̸= f|x2|(x2)

Since f|x1|(x1) = g(u∪v) (see definition 5.1 on page 59) then, the above statement

requires that there is a function f in the Cn
1 family for which: f|x1|(x1) ̸= f|x2|(x2).

This implies the following:

g(u ∪ v) ̸= g(u′ ∪ v′) =⇒∑
i

wiσ(A(u ∪ v)) ̸=
∑
i

wiσ(A(u
′ ∪ v′)) =⇒

σ(A(u ∪ v)) ̸= σ(A(u′ ∪ v′)) =⇒

A(u ∪ v) ̸= A(u′ ∪ v′)

In order to show that, choose A ∈ An such that A(u ∪ v) ̸= A(u′ ∪ v′). Because

u ∪ v ̸= u′ ∪ v′ (e.g. x1 ̸= x2), then A(u ∪ v) ̸= A(u′ ∪ v′) (remember that

A(u ∪ v) = (u ∪ v)w+ b) if we choose either w or b to be non-zero. This means

that f|x1|(x1) ̸= f|x2|(x2) and, therefore, Cn
1 separates points on K.

• Cn
1 vanishes at no point of K:

∀x ∈ K ∃f ∈ Cn
1 | f(x) = c, c ∈ IR, c ̸= 0

Since f|x|(x) = g(u∪v) (see definition 5.1 on page 59) then, the above statement

requires that there is a function f in the Cn
1 family for which f|x|(x) = g(u∪v) ̸= 0

This implies the following:

g(u ∪ v) ̸= 0 =⇒∑
i

wiσ(A(u ∪ v)) ̸= 0 =⇒

σ(A(u ∪ v)) ̸= 0 =⇒

A(u ∪ v) ̸= 0

In order to show that, choose A ∈ An such that A(u ∪ v) ̸= 0 (remember that

A(u∪v) = (u∪v)w+ b). This is easy because even if u∪v is zero, b can always

be chosen to be non-zero, hence A(·) is non-zero5.

5 This is one of the reasons why a bias term is needed at each neuron.
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Classes 2 and 3 are subsets of the class 1, since the only differences between them are

their topology (network structure) and the target values that each ffnn is trained with.

Hence, they are, too, universal function approximators.

5.7 Single FFNN and C1 entity: comparison of training

times

In this section we will attempt to quantify the difference in training times between a

C1 entity and a single ffnn. It is the extension to section 4.4.2 on page 40. Here are

the main assumptions regarding the architecture of the two models:

i. each ffnn has only one hidden layer,

ii. the number of hidden layer units of a given ffnn is a percentage of the number

of its inputs. Call this percentage α,

iii. the number of inputs, ninp, of each of the ffnn units making up the entities is fixed

and may be expressed as a percentage of the total number of input dimensions,

N . Call this percentage β. Thus,

ninp = βN (5.11)

iv. the total number of ffnn units making up the entity, nf , should be sufficient to

cover all inputs. For example, if there are 100 input dimensions and was decided

that each ffnn has a number of inputs which is 20% of the total number of input

dimensions (e.g. 100 × 20% = 20 inputs) then there must be at least 5 ffnn in

the entity. As a matter of fact, it is good practice to add a few extra ffnn in the

entity. Thus,

nf = γ
N

ninp
= γ

N

Nβ
=
γ

β
(5.12)

where, γ is a percentage (greater than 100% so that no inputs are left out). Note

that the connections between the ffnn of the entity are not adjustable.

The time required by a ffnn to do a single training iteration (forward and backward

step) over a single input vector of N dimensions is proportional to the number of its

adjustable parameters6

TS ∝ αN(N + 2) + 1 (5.13)

6 These are all the weights and biases. Refer to section 4.4.2 on page 40 and equation 4.3 therein

for details.



5.7. SINGLE FFNN AND C1 ENTITY: COMPARISON OF TRAINING TIMES 75

The time required by an entity to do the same is proportional to its total number of

adjustable parameters. This is the sum of the number of adjustable parameters of each

ffnn making up the entity. Recall that there are nf identical ffnn, each with ninp

inputs. Thus,

TE ∝ nf · α ninp(ninp + 2) + 1 =
αγ

β
βN(βN + 2) + 1 = αγN(βN + 2) + 1 (5.14)

Now, let us compare the training times of the two models in terms of the ratio7 TS/TE :

TS/TE =
αN(N + 2) + 1

αγN(βN + 2) + 1
(5.15)

The above expression has a horizontal asymptote8 given by:

Ya = lim
N→∞

TS/TE =
1

βγ
(5.16)

Thus, provided that the same α is used, the training time of an entity will be shorter

than that of a single ffnn, by a factor which will approach βγ as the number of input

data dimensions (N) increases.

In conclusion,

• the ratio of the training times of the two models is independent of the number of

hidden layer units of single ffnn. Thus, these results apply for any size of single

ffnn as long as the same α is used for both models,

• the training time of the entities will be less than that of single ffnn as long as

βγ < 1. This means that the training time of an entity will be the same even if

more ffnn are added to it (in order, perhaps, to improve generalisation) as long

as the number of inputs to these ffnn is kept sufficiently small.

Example 5.2 An entity was constructed using γ = 300% – e.g. the number of ffnn

in that entity is three times as much as the minimum number of ffnn required to cover

all the input dimensions. This means that if there were 500 input dimensions in the

training data and that each ffnn of the entity had 50 inputs, then the total number of

ffnn making up the entity was 500
50 ×300% = 30. Figure 5.4 shows plots of the quantity

TS−TE
TE

× 100% as the number of input dimensions varies from 200 to 1,000 and for

different β. The top plot corresponds to β = 1% (e.g. each ffnn had a number of

7 The constant of proportionality in the expressions TS and TE is the same.
8 In practical situations N→∞ may be interpreted as N >200 or N >300 depending on β and γ.

This is shown in the plots of figure 5.4.
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inputs corresponding to 1% of the total number of input dimensions) and the bottom

plot corresponds to β = 30%. Remember that the entities will be faster than a single

ffnn as long as β is less than 1/γ, e.g. 1/3.
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Figure 5.4: Comparison of training times of a single ffnn and an entity: TS−TE
TE

×100%
versus the number of data dimensions, for 1% ≤ β ≤ 30%

The fastest entity training occurs when each constituent ffnn has number of inputs

which is 1% of the data dimensions. That means 2 inputs when the dimensions are 200

and 10 when the dimensions are 1,000. In this case the entity is faster than a single

ffnn by 25 to 30 times. On the other hand, the training times of the entity and the

single ffnn are the same when the number of inputs to each entity ffnn ranges from

60 to 300, e.g. 30% of the number of data dimensions.

For the sake of achieving a good generalisation, the number of inputs to each ffnn

making up the entity should neither be too low (e.g. 1%) nor too high (e.g. 30%). A

more wise choice would be something like 10%.

In this end, an experiment has been conducted in order to verify these results in practice

and, also, to investigate the generalisation ability of the two models when the training

time benefits maximise. The experiment consisted of training and testing an entity and

a single ffnn with data of 500 input dimensions. This data was obtained artificially
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via the Levy6 function (see section 6.3.5 on page 89 for more details). The two models

were constructed with the following parameters:

• α = 10%: the number of hidden layer units of each ffnn is just 10% of the number

of its inputs9. Thus, the architecture of the main single ffnn was 500 × 50 × 1

and, therefore, contained 25,050 weights,

• β = 10%: each single ffnn making up the entity had 50 inputs (e.g. 10% of 500

input dimensions). Thus the architecture of each single ffnn in the entity was:

50× 5× 1 and, therefore, contained 255 weights,

• γ = 300%: the total number of single ffnn in the entity must be three times as

much as the number required to cover all 500 inputs. This means that the entity

consisted of 500/50 × 300% = 30 single ffnn and contained a total of 7,650

weights.

With these construction parameters, the training time of the entity is predicted to be

1/βγ = 1/(10%× 300%) = 3 times shorter than that of the main single ffnn.

The training data consisted of 70 vectors while the test data consisted of 2, 000 vectors.

The training/test procedure was repeated for 50 times. Each network was trained for

1,000 iterations. Tables 5.2 and 5.3 show the minimum, maximum, mean and stan-

dard deviation of the training time and approximation error of the single ffnn and

the entity.

minimum maximum mean std. dev.

Entity 0.0475 0.1067 0.0629 0.0109

single FFNN 0.0722 0.2138 0.1109 0.0196

Table 5.2: Approximation error results

(seconds) minimum maximum mean std. dev.

Entity 786 805 792.9 3.49

single FFNN 2, 577 2, 905 2, 699.3 56.22

Table 5.3: Training time results

A comparison of mean training times shown in table 5.3 indicates that the single ffnn

takes more than three times longer to train than the entity: 2699.3/792.9 = 3.4. As far

as the approximation capability of the two models is concerned (table 5.2), the entity

9 Note that all single ffnn consisted of a single hidden layer.
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generalises much better than the single ffnn with a mean error of 0.0629 compared to

0.1109. Thus, not only the entity is trained significantly faster than the single ffnn

but also its generalisation ability is better. It is also comparable to the generalisation

ability of the entities in test VariDim of section 6.3.6.5 on page 112 which, according

to figure 6.1 on page 92 contained twice as many weights.

5.8 Benefits from using the entities

The adoption of the entities as an alternative to a single, solid ffnn solves the following

problems:

1. The coarse-grain parallelism which characterises the entities favours a more prac-

tical and efficient implementation. By increasing the complexity of the basic

computational element (e.g. this is now a ffnn rather than a neuron), a better

allocation of resources can be achieved; the mapping of processes to processors is

now more balanced. Furthermore, by reducing the number of basic computational

elements, the processor to processor communication needs are minimised.

2. The dimensionality of input data no longer governs the number of inputs and

size of each ffnn. The entities can deal with high-dimensional data by increas-

ing the number of basic elements (ffnn) and not the number of inputs to each

ffnn. Thus, ffnn can be created at any convenient size and added to the en-

tity, virtually, without any serious restrictions – given the coarse-grain parallelism

advantage.

3. The relatively small size of the basic processing element of the entity not only

allows for successfully dealing with high-dimensional data – which for the case of

a solid ffnn was extremely difficult due to the curse of dimensionality – but also

the training of each ffnn is more effective in the absence of pathologies such as

premature neuron saturation, complex error surfaces, local minima, etc.

4. The effects of the NP-completeness results for the loading problem are not as

dramatic for the case of the entities as they are for the case of solid neural net-

works. The difference is that instead of having a single neural network with a

large number of inputs, we have a large number of smaller ffnn with significantly

less number of inputs.

5. The study, visualisation and interpretation of the learning process are ameliorated

with the adoption of the ffnn as the basic building block of the entities – not
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too large and complex as in the case of a solid ffnn, not too small and simple

as in the case of a neuron – they are now effected within a framework which

approaches that of traditional AI, e.g. where information is manipulated at the

level of symbols.

Still, information is distributed and stored implicitly in the weights of each ffnn

and the weights of their connections with other ffnn. But it also exists on a

higher level, that of the numerous single ffnn, which can identify more readily,

meaningful information.

Thus, the entity learns and process information in a more explicit way – something

which brings us a little bit closer to symbolic systems and all the benefits that

implies without departing from connectionist principles.

Perhaps a system exhibiting a dual character featuring a connectionist and at the

same time symbolic self will be more successful than the unadulterated alterna-

tives of the past.

5.9 Summary

A review of past and present trends in the area of modular neural network architectures

has revealed that although there has been much effort in improving the generalisation

ability of these networks, the aspect of scaling up and the subsequent problems due to

the curse of dimensionality have received little or no attention. The main motivation

of this research was to investigate how the effects of the curse of dimensionality on

neural networks can be minimised while generalisation ability is not compromised.

This chapter was dedicated in describing the concept of feed forward neural network

entities, a methodology which uses the ideas of modularisation and function decom-

position in tackling problems associated with scaling up single neural networks. The

structure of the entities can be described using the same taxonomy as with ordinary

neural networks, where units belong to the finest level, layers to a coarser level and

networks to a still coarser level of classification, but not at the end of the scale!

An entity is composed of units which are themselves neural networks rather than simple

neurons. These units may be layered and linked with connections of adjustable strength

just like ordinary neurons in the case of single ffnn. The connectivity of the elements

of an entity as well as their training targets were two criteria we used to distinguish

between three different entity classes, namely class 1, 2 and 3. The connectivity of
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classes 2 and 3 is more ordered than that of class 1 whereas the training targets for

classes 1 and 2 are simpler than those of class 3.

Currently, all three entity classes may implement only single output functions. De-

signing entities implementing functions with higher output dimensions can be a direc-

tion for future work.

The universal function approximation capability of the entities was proved using the

Stone-Weierstrass theorem. Finally, a simple language, npnp , which may be used to

create, train and test ffnn and entities of ffnn has been introduced.

The main benefit from using the entities instead of single feed forward neural networks

is that they can cope well with problems of extremely high dimensions because of their

distributed nature. Also, parallel implementation of the entities is much more practical

than single ffnn because they favour a coarser grain parallelism. In this end, the

effects of the NP-completeness results for the loading problem can be reduced. Also, in

sequential mode, there are enormous benefits obtained by the reduced training times

required by the entities.

Additionally, the entity – because of the adoption of the ffnn as the basic building

block – learns and process information in a more explicit way while it promotes a

computational model which can be studied with an arbitrary level of abstraction.

The next chapter will investigate, at a practical level, the generalisation ability and

training time of the entities and how they compare to those of single ffnn.
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empirical results

Various tests comparing the performance of a single FFNN and a FFNN
entity were carried out. The results are presented and discussed herein.

6.1 Introduction

In previous sections, it was shown that the families of functions represented by the ffnn

entity classes C1, C2 and C3 are universal function approximators and, therefore, can

approximate arbitrarily well any real, continuous function. The theoretical importance

of this result is great because it supports the claim that the expressive power of the

entities neural network architecture is equivalent to that of a single ffnn1.

Moreover, it was argued that the application of ffnn entities in optimisation and clas-

sification tasks involving a large number of input parameters will alleviate a significant

number of practical problems which are currently hindering the learning process of

single ffnn when applied to the same tasks. In particular, it is claimed that the

entities are largely immune to problems relating to the curse of dimensionality such

as extremely complex error surfaces, large number of local minima, premature neuron

saturation etc. These problems are not only responsible for unstable and inconsistent

training2 but also for much longer training times and cumbersome architectures.

Finally, training times can be reduced even further when parallelised entity implemen-

tations are used. The efficiency of these implementations is a prominent feature of the

entities and emanates from the fact that their structure promotes a coarse-grain type

1 Recall that a similar result, regarding the universal function approximation property, holds for

single ffnn too – see section 3.3 on page 25 for details.
2 Instability because of premature neuron saturation, as it was pointed out in section 4.4.4 on

page 44, and inconsistency because of the large number of local minima, as it was explained in sec-

tions 4.4.2 on page 40 and 4.4.3 on page 43.
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of parallelism, as opposed to the fine-grain parallelism model of the single ffnn.

In this chapter we would like to present the empirical results of the various tests and

experiments we have conducted with the purpose of comparing some aspects of the

entities and single ffnn.

6.1.1 Limitations

We would like to point out that the experimental procedure presented in this chapter

compares a single ffnn with the three entity models on the basis of only one problem

– the Levy6 function. Naturally, the results would have been more conclusive if the

comparison had been based on a wider choice of data and neural network models.

For example, it is very likely that entities will not perform well on the n-bit parity

problem because of the fact that each ffnn in an entity is trained with only a partial

set of the data inputs. On the other hand, a single neural network which deals with

the full set of the inputs will surely perform better.

Thus, we would like to stress the fact that although the entities do perform better

than single ffnn on the basis of the Levy6 data sets, more experiments, based on a

wider choice of problems and training data, must be carried out in order to obtain more

conclusive results.

6.1.2 Statistical analysis

So why is there a need for an experimental evaluation of neural networks and proper

statistical analysis of these results?

“ We do need experiments in neural network research because the methods

we employ and the data we want to analyse are too complex for a complete

formal treatment. I.e. for a given data analysis problem we do not have

the formal instruments to decide which of the methods is the optimal one

... the last word in the decision is always spoken by an empirical check, an

experiment, as in any other science that needs empirical evaluation of its

theories.” [Flexer, 1996]

The tests described in this chapter are divided in two main categories:

1. Generalisation Ability

2. Parallelisation
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The first category, Generalisation Ability, consists of two tests, VariDim and Cons-

Dim, whereas the Parallelisation category consists of only one test. Section 6.2 outlines

the methodology followed during the various experiments of each category.

Section 6.3 deals with the two tests under the Generalisation Ability category. Below

is the layout to be followed in explaining the procedures and presenting the results of

the two tests VariDim (in section 6.3.6) and ConsDim (in section 6.3.7):

• Procedure/Methodology: contains a description of all the participating net-

works, data sets and the training and test procedures.

• Network sizes (only forVariDim): explains how the participating networks’ sizes

(in terms of their number of weights) relates to the number of input dimensions.

• Training time results: presents and analyses results regarding the training time

of the participating networks.

• Sample error results: presents and analyses results regarding the sample error

(e.g. error during training) of the various networks.

• Approximation error results: presents and analyses results regarding the ap-

proximation error (e.g. error during testing) of the various networks.

Section 6.4 deals with the one test under the Parallelisation category. It presents and

analyses the results regarding the time required by four class 1 ffnn entities trained

in sequential and parallelised modes.

Finally, section 6.5 concludes the chapter with a summary of all the experiments carried

out and an outline of the obtained results.

6.2 Proposed methodology

6.2.1 Generalisation Ability

Two tests will be carried out using a total of eight network configurations: four single

ffnn, two class 1 entities, one class 2 and one class 3 entity.

In VariDim, the number of training vectors will be kept constant as the number of

input dimensions of each network increases. This test aims at demonstrating how the

different networks cope with increasing data dimensionality. Ideally, the dimensional-

ity of the training data should have no effect on the generalisation ability of a neural

network. In practice, however, the generalisation ability of a single ffnn is usually
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reduced as the number of input dimensions increases. With this test we wish to inves-

tigate and compare the effect of increasing data dimensionality on the performance of

the participating networks.

For each different network and for each different number of input dimensions we will

repeat the training process with different initial conditions (e.g. starting with random

weights) for 50 times and measure, each time, the sample and approximation errors

and training time.

In ConsDim, we will keep the number of input dimensions and size of each network

fixed while the number of training vectors varies. The aim of this test is to investigate

the effect of the increasing number of training vectors on the sample and approximation

error of the different networks.

For each different network and for each different number of training vectors we will

repeat the training process with different initial conditions (e.g. starting with random

weights) for 50 times and measure, each time, the sample and approximation errors

and training time.

The training data for the networks of both tests is obtained artificially using the Levy

data generating function. This procedure is described in section 6.3.5.

The means of the sample and approximation error results of both experiments will

be tested for statistical significance using the one-tailed t-test at a 5 % significance

level. Why is it necessary to test for statistical significance the obtained experimental

results? [Flexer, 1996] emphasises the fact that statistical evaluation is necessary for

neural network experiments and advises to use the t-test which “should be computed

to test the significance of the difference between means”.

The variance3 of the sample and approximation error results of the two experiments

will be tested for statistical significance using the one-tailed F-test at, again, a 5 %

significance level. More details about the statistical significance tests can be found in

section 6.3.3 and also in appendix E on page 185.

A more detailed description of the procedure followed for VariDim can be found in

section 6.3.6.1. Section 6.3.6.2 outlines the relationship between network size (in terms

of weights) and the dimensionality of the input data. Then, in sections 6.3.6.3, 6.3.6.4

and 6.3.6.5 the obtained results (training time, sample error and approximation error

respectively) are described and discussed.

3 Variance is the square of standard deviation. The two terms are directly related and will be used

interchangeably throughout this section.
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ConsDim’s procedure is described in section 6.3.7.1, in sections 6.3.7.2, 6.3.7.3 and

6.3.7.4 the obtained results (training time, sample error and approximation error

respectively) are described, analysed and discussed.

6.2.2 Parallelisation of the entities’ training procedure

In this test, the time benefits gained from parallelising the training procedure of a C1

entity – as opposed to the conventional, sequential training – will be assessed. The

parallelisation scheme used was a very simple one. At first, the network’s units are

grouped according to their respective layers. Secondly, the units of the first layer are

divided evenly among four networked workstations and their parallel processing starts.

When all first layer units are trained, the same procedure is repeated for the units

of the second layer and so on, until all the units of the entity are trained. When the

training of all units in a given layer is completed, the weights are transfered to a central

store where the test procedure will take place sequentially.

The evaluation consisted of training four different C1 entity networks of various sizes,

first sequentially and then in parallel with the same data set and for the same number

of iterations (1, 000). This procedure was repeated for 50 times. At the end of each

run, the training time was recorded. The minimum, maximum, mean and standard

deviation of the training time were then calculated over the 50 runs.

6.3 Generalisation Ability

6.3.1 Introduction

Two tests were carried out. The aim of the first test, VariDim, was to investigate

the performance of the entities and single ffnn when the number of input dimensions

varied from 100 to 1, 000 while the number of training vectors was kept constant. The

aim of the second test, ConsDim, was to investigate the performance of the entities

and single ffnn when the number of training vectors varied from 20 to 220 while

the number of input dimensions was kept constant.

Performance is characterised by the triplet:

• the time required to complete a fix number of training iterations,

• the sample error, e.g. the error over the training set,

• the approximation error, e.g. the error over the test set.
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A problem which has been encountered during this evaluation, is that there are struc-

tural differences not only between entities and single ffnn networks but also between

the different entity classes (e.g. C1 is structurally different to C2 and C3). Thus, it is

quite difficult to say whether two network configurations of different architectures are of

the same “capacity”. This translates to the following problem: “given a training data

set of so many dimensions, what should the structural parameters of each evaluated

network be in order not to favour a particular network just because it has a larger ca-

pacity than the others”4. The total number of weights was chosen as the categorisation

criterion. Essentially, the number of weights in a network, either being an entity or a

single ffnn, is proportional to the cost – e.g. time and computer resources – one has

to pay to train that network. Therefore, for a given test, the networks were created so

that they had approximately5 the same number of weights.

6.3.2 Objectives

In the two tests of the Generalisation category we are interested in comparing the per-

formance (training time, sample error and approximation error) of the participating

networks. In particular, we sought an answer to the following questions:

1. Do the networks consistently converge to a low enough sample error level?

2. Is the corresponding approximation error low enough?

3. Do the sample and approximation errors depend on the number of input di-

mensions (for VariDim) or the number of training vectors (for ConsDim)?

The first question refers to the complexity of the error surface for the different networks,

in terms of the number of local minima it contains. In previous discussions (for example,

in Chapter 4 on page 31), we argued that if the complexity of the error surface is high,

the training procedure will not be consistent – sometimes it will converge to one local

minimum, sometimes to another – thus yielding very different sample errors. Therefore,

it is necessary to identify those network configurations which, for the same training

4 A similar problem is, perhaps, the categorisation of boxers; there are many parameters which

might be used to compare and categorise boxers (such as, perhaps, weight, height, arms’ length, or

I.Q.) but there is no absolute criterion.
5 Here, we use the adverb approximately because even the number of weights can not be controlled

exactly. For example, take the equation L1 = W
L0+1

which governs the number of weights, W , of a

single ffnn of a single hidden layer of L1 units, L0 inputs, one output. It does not have integer

solutions for all W and L0. This problem becomes more complicated when dealing with the entities

which are composed of a lot of single ffnn.
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data, are systematically associated with complex error surfaces. These networks are

obviously inadequate.

The second question refers to the utility of the given network configuration since the

approximation error is a measure of how well the trained networks will perform on the

whole input data domain. Given that the test set represents accurately the input data

distribution, the most useful network will be the one with the lowest approximation

error.

With the third question, for VariDim, we are investigating the effect of two problems:

the curse of dimensionality and premature neuron saturation. These problems are

known to hinder neural networks when the dimensionality of the input data becomes

large. For ConsDim, we are interested to see how the number of training vectors affects

the overall performance of each of the participating networks.

6.3.3 Statistical significance tests

When using a statistical significance test to compare the mean or variance of the

sample and approximation errors of an entity and a single ffnn (in any of the two

tests VariDim and ConsDim), we start with three hypotheses:

1. The null hypothesis, H0, which says that the mean / variance of the sample /

approximation errors of an entity and a single ffnn do not differ significantly

at the 5 % significance level.

2. The H1 hypothesis which says that the mean / variance of the sample / ap-

proximation error of the entity is significantly higher than that of the single

ffnn.

3. The H2 hypothesis that the mean / variance of the sample / approximation

error of the entity is significantly lower than that of the single ffnn.

Eventually, one of the three hypotheses will be accepted and the other two rejected.

The t-test and the F-test will be performed for each entity / single ffnn pair and for

each number of input dimensions (if in VariDim) or each number of training vectors (if

in ConsDim). Then, the percentage of acceptance of each hypothesis over some range

of input dimensions / number of training vectors will be calculated. In order to make

it easier to draw any conclusions associating performance with the number of input

dimensions / number of training vectors we have decided to perform the two statistical

tests over two ranges:

• the lower range: for 100 to 500 input dimensions or 10 to 120 training vectors,
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• the upper range: for 500 to 1,000 input dimensions or 120 to 200 training vectors.

Thus, for each test (VariDim or ConsDim) and for each sample / approximation er-

ror result, two tables, corresponding to the lower and upper range of input dimensions

/ number of training vectors will be constructed as follows:

• each row of the table corresponds to an entity network,

• each column of the table corresponds to a single ffnn,

• each entry of the table contains the triplet (α, β, γ), associated with the results

of performing the t-test or the F-test on the entity network which corresponds to

the row of the entry and the single ffnn which corresponds to the column of this

entry,

• in the triplet (α, β, γ), α is the percentage of acceptance of the null hypothesis or

H0. β is the percentage of acceptance of the H1 hypothesis. γ is the percentage

of acceptance of the hypothesis H2.

For example, take table 6.4 on page 102. Its top, left-hand entry is (33, 5, 62) and

corresponds to the comparison of the means (that was a t-test) of the sample error of

the two networks C1 (row) and N1 (column), over the lower range of input dimensions

(e.g. from 100 to 500). According to this entry, the null hypothesis was accepted 33 %

of the times, the H1 hypothesis was accepted 5 % of the times and the H2 hypothesis

was accepted 62 % of the times.

6.3.4 Presentation of the results

The mean, standard deviation, minimum and maximum of the three quantities which

determined the performance of each network, e.g. training time, sample error and

approximation error, are calculated for a given number of input dimensions or training

vectors and over the 50 repeats of the training / test procedure. These data were then

plotted against the number of input dimensions (for VariDim) and the number of

training vectors (for ConsDim). Additionally, the sample and approximation error

were plotted as scattered points for each different number of input dimensions and

number of training vectors.

An absolute criterion for the comparison of the performance of the different networks

is the lowest, highest and average of the mean and standard deviation of the sample

and approximation errors calculated according to the procedure outlined in section

6.3.6.1. These data are presented in various tables throughout this chapter.
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6.3.5 The Levy data-generating procedure

In [Levy and Montalvo, 1985] a procedure for generating multi-modal continuous func-

tions with arbitrary number of inputs is outlined. This procedure was followed in order

to create datasets with a variable number of input dimensions to be used in the tests

following. Certainly there are other procedures which may be used in such tasks. The

choice of this particular function was based on the complexity of its surface and the

large number of its roots. Furthermore, this same function was used by Levy and

Montalvo to test their Tunnelling Algorithm, a global optimisation technique.

The original function with variable number of inputs is the following:

F2(x1, · · · , xr) = sin(3πx1)
2+

+

r−1∑
i=1

(xi − 1)2(1+ 10 sin(3πxi+1)
2)+

+ (xr − 1)(1+ sin(2πxr)), for − 1 < xi < 1

(6.1)

The following modifications were made in order to adjust the range and domain of the

original function to the requirements of our neural network models:

• normalisation coefficients were introduced in order to limit the output within the

range of, approximately, −1 and 1,

• the transformation xi → 2xi−1 was applied to each of the input variables so that

the function is adjusted to the new domain: 0 < xi < 1.

The final form of the data-generating function is the following:

F2(x1, · · · , xr) =
1

10
sin(3π(2x1 − 1))2+

+
1

1.2
√
r

r−1∑
i=1

(2xi − 2)2(1+ 10 sin(3π(2xi+1 − 1))2)+

+
1

10
(2xr − 2)(1+ sin(2π(2xr − 1))), for 0 < xi < 1

(6.2)

The inputs to the Levy function (and, thus, the inputs to the neural networks) are

generated by a pseudo-random number generator (C-language’s lrand48() function

which returns long integers uniformly distributed over the interval [0, 231). Refer to

the Unix manual pages, section 3C, for more details) and normalised to the interval

(0.0, 1.0). Typically, a representative set of inputs, produced by this pseudo-random

number generator, will have a standard deviation of 0.28 and be centred around 0.5.
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6.3.6 Generalisation Ability: the VariDim test

6.3.6.1 VariDim: Methodology

The methodology followed for VariDim is detailed below:

• The networks to be tested are described in the following table:

NAME DESCRIPTION

C1 a C1 entity model

C1,big a C1 entity with 66% more weights than C1
C2 a C2 entity model with as many weights as C1
C3 a C3 entity model with as many weights as C1

N1 a single ffnn with 35% less weights than C1
N2 a single ffnn with as many weights as C1
N3 a single ffnn with 55% more weights than C1
N4 a single ffnn with 135% more weights than C1

Table 6.1: VariDim, description of the evaluated networks

The relationship between the total number of weights and the number of input

dimensions for each of the evaluated networks C1, C1,big, C2, C3, N1, N2, N3 and

N4 is depicted in figures 6.1, 6.2, 6.3, 6.4, 6.5. 6.6, 6.7 and 6.8, respectively.

• each ffnn unit of the entity models had 12 to 35 inputs, one hidden layer of 10

to 20 units, and a single output,

• the training data consisted of 70 vectors6 and was produced by the Levy function,

equation 6.2,

• the number of input parameters varied from 100 to 1, 000 (step 20),

• the number of weights was increased as the number of input data dimensions

increased and according to the percentages of table 6.1. For the case of the single

ffnn, this meant increasing the units of the hidden layer. For the case of the

entities, it just meant increasing the number of ffnn while their size (e.g. number

of inputs as well as number of weights) was unchanged,

6 This particular number of training data vectors was chosen after experimenting with 50, 70 and

100 vectors. The number of 50 vectors was too small for extracting reliably any conclusions regarding

the generalisation performance of the networks. Whereas, the number 100 was too large, not only

because of the danger of memorisation (as opposed to generalisation) but also because the training

times were going to be larger. Also, note that the results of these tests will be studied comparatively

rather than in absolute terms.
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• for each different training data set, both the entities and the single ffnn were

trained for 1, 000 iterations7,

• the test data consisted of 2,000 vectors. None8 of these vectors was used for

training. The final approximation error was calculated using the mean squared

error measure (see equation 3.6 on page 27),

• for a given number of inputs, the training/test procedure was repeated for 50 times

with the same data and network architecture but with different starting weights.

The training time and sample and approximation errors were recorded for each

of these training attempts and then the maximum, minimum, mean and standard

deviation were calculated as follows:

procedure VariDim:

for number of input dimensions i := 100 to 1, 000 step 20 do

produce training data set

produce test data set

produce neural network/entity

calculate total number of weights, numW

initialise sum and sumsum to zero

reset minimum errori and maximum errori

for training attempts j := 1 to 50 do

initialise weights to random

train neural network/entity for 1,000 iterations

test neural network/entity

calculate errorij using equation for mean squared error

store errorij

update minimum errori := minimum of (errorij and minimum errori)

update maximum errori := maximum of (errorij and maximum errori)

sum := sum + errorij

sumsum := sumsum + error2ij

end

mean errori := sum
50

standard deviation of errori :=
√
( sumsum

50 − (mean error2i ))

store minimum errori and maximum errori

store mean errori and standard deviation of errori

end

end VariDim.

7 This particular number of training iterations was considered after experimenting with smaller and

larger numbers. In these preliminary tests, the rate of change of the training error, for most of the

networks, was approaching zero after about 1, 000 iterations. Using a larger number of iterations would

not only have resulted in longer training times but, also, would have risked over-fitting.
8 Remember that both training and test input vectors are generated randomly with different seed.
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• the quantities minimum errori, maximum errori, mean errori and standard de-

viation of errori were, then, plotted against the total number of inputs, i. See,

for example, figure 6.17 which refers to the sample error results of the C1 entity

network.

• the values of errorij were plotted (as scattered points) against the total number of

inputs, i. See, for example, figure 6.25 which refers to the sample error results of

the C1 network. On each of the scatter plots a line has been fitted using the least

mean squares method. These lines indicate the general linear trend, assuming

there is one, followed by the sample and approximation error for each different

network – something which is difficult to see from the scattered points alone,

• the average, lowest and highest values of mean errori and standard deviation

of errori over the whole range of input dimensions are shown in various tables

throughout the next sections. See, for example, table 6.2 which refers to the

sample error results of the entities.

6.3.6.2 VariDim: network sizes

The following figures depict the relationship between the number of weights and

number of inputs of each of the networks used in this evaluation (see also table 6.1).
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Figure 6.1: C1, number of weights against number of inputs
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Figure 6.2: C1,big, number of weights against number of inputs

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

N
um

be
r 

of
 w

ei
gh

ts

Number of inputs

Figure 6.3: C2, number of weights against number of inputs
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Figure 6.4: C3, number of weights against number of inputs
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Figure 6.5: N1, number of weights against number of inputs
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Figure 6.6: N2, number of weights against number of inputs
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Figure 6.7: N3, number of weights against number of inputs



96 chapter vi

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

N
um

be
r 

of
 w

ei
gh

ts

Number of inputs

Figure 6.8: N4, number of weights against number of inputs

6.3.6.3 VariDim: training time results

The fact that the training time of a single ffnn (for a fixed number of training iter-

ations) is proportional to the total number of weights is, again, confirmed in practice

(see also section 4.4.2 on page 40 and figure 4.2 therein). Figures 6.13, 6.14, 6.15 and

6.16 show the linear relationship between training time and number of weights for

the single ffnn N1, N2, N3 and N4, respectively. Moreover, the same relationship of

proportionality applies for the entities too. Figures 6.9, 6.10, 6.11 and 6.12 depict this

linear relationship for the four entity networks C1, C1,big, C2 and C3, respectively.
However, the fact that the entities’ and single ffnn’s training times are directly

proportional to the number of their weights does not equate them as far as performance

is concerned, simply because performance consists of three quantities rather than just

one – time. Thus, one should not isolate training time but link it, at least, to ap-

proximation error. As we will see later, when the approximation error results will be

discussed (in section 6.3.6.4), an entity yields a much lower approximation error than

a single ffnn with the same number of weights (compare, for example, C1 to N2, tables

6.8 and 6.9 on page 113) Although both require the same training time. In spite of

the fact that all experiments were carried out on computers of equal CPU power, some

occasional variations in training time occurred because, most likely, of network traffic.
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The following figures show the time taken for the networks to complete 1, 000 training

iterations as a function of the total number of their weights.
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Figure 6.9: C1, training time against number of weights
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Figure 6.10: C1,big, training time against number of weights
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Figure 6.11: C2, training time against number of weights
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Figure 6.12: C3, training time against number of weights
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Figure 6.13: N1, training time against number of weights
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Figure 6.14: N2, training time against number of weights
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Figure 6.15: N3, training time against number of weights
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Figure 6.16: N4, training time against number of weights
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6.3.6.4 VariDim: sample error results

Figures 6.17, 6.18, 6.19 and 6.20 show that all entity models reach a very low sample

error. In particular, C1 reaches the lowest error, followed by C1,big, C2 and C3. The

single ffnn also reach a low sample error which, most of the time, does not differ

significantly from that of the entities (see figures 6.21, 6.22, 6.23 and 6.24). For example,

the statistical significance tests comparing the mean sample error of C1 and N1 (t-test
9,

see tables 6.4 and 6.5) indicate that for both below and over 500 input dimensions, the

two errors either do not differ significantly or the sample error of C1 is lower than that

of N1. The cases where the N1 error is lower than C1’s are marginal. Of all the entity

and single ffnn networks, C2 and C3 often10 exhibit higher sample errors than N1 and

N2, but lower than N3 and N4.

C1 C1,big C2 C3
C1 entity C1 (66% more weights) C2 entity C3 entity

×10−03 mean std.dev mean std.dev mean std.dev mean std.dev

lowest 0.176 0.053 0.161 0.028 0.298 0.174 0.636 0.052

average 0.501 0.398 0.557 0.455 1.577 1.486 2.011 1.686

highest 2.292 2.035 3.035 2.710 4.791 6.764 10.747 9.554

Table 6.2: VariDim, sample error statistics for the entities

N1 N2 N3 N4

35% less weights standard 55% more weights 135% more weights

×10−03 mean std.dev mean std.dev mean std.dev mean std.dev

lowest 0.229 0.307 0.558 0.760 1.817 1.171 1.849 2.148

average 1.488 3.067 1.677 2.502 8.539 11.517 22.986 28.893

highest 4.503 8.523 3.508 9.004 94.157 121.035 84.978 163.099

Table 6.3: VariDim, sample error statistics for single ffnn

The value of the sample error, however, is not necessarily associated with the gen-

eralisation ability of a learning machine11. What is of interest to us is whether the

training process is consistent. The term consistency refers to the variation of the ob-

served sample error when training a network for several times and for a given number

of inputs. A measure of this variation is the standard deviation of the sample error of

9 For an explanation on how to read these tables please refer to section 6.3.
10 This becomes rarer as the number of input dimensions increases.
11 For example, a low sample error for a single ffnn might be an indication of over-fitting resulting

to very bad generalisation.
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the same network over a number of training attempts, for a given number of inputs.

A consistent training process is indicated by a relatively small standard deviation value

and is the result – among other factors – of a smooth error surface and a small number

of local minima. On the other hand, a large standard deviation could be the result of an

inconsistent training process which would – most likely – mean that the error surface

is so complex that the probability that two runs converge to the same local minimum

is small.

%, %, % N1 N2 N3 N4

C1 33 , 5 , 62 14 , 0 , 86 14 , 0 , 86 14 , 0 , 86

C1,big 43 , 14 , 43 14 , 10 , 76 10 , 0 , 90 10 , 4 , 86

C2 52 , 48 , 0 62 , 19 , 19 57 , 5 , 38 33 , 5 , 62

C3 29 , 71 , 0 76 , 19 , 5 71 , 10 , 19 43 , 9 , 48

Table 6.4: VariDim, statistical significance (t-test) of the sample error results for 100

to 500 input dimensions

%, %, % N1 N2 N3 N4

C1 56 , 4 , 40 52 , 0 , 48 4 , 0 , 96 0 , 0 , 100

C1,big 56 , 4 , 40 48 , 0 , 52 4 , 0 , 96 0 , 0 , 100

C2 72 , 12 , 16 91 , 0 , 9 12 , 0 , 88 0 , 0 , 100

C3 84 , 12 , 4 83 , 13 , 4 28 , 0 , 72 0 , 0 , 100

Table 6.5: VariDim, statistical significance (t-test) of the sample error results for more

than 500 input dimensions

The training process of the entities, for a given number of inputs, is fairly consistent

as there is not so much variation. In particular, the standard deviation of sample error

of the C1 network is around 0.4 × 10−03, on average, and not exceeding 2 × 10−03.

C1,big’s error is around 0.5 × 10−03, on average, and not exceeding 2.7 × 10−03. For

the C2 network, it is around 1.5 × 10−03, on average, and not exceeding 7 × 10−03,

whereas for C3, the standard deviation is around 1.7 × 10−03, on average, and not

exceeding 10× 10−03 (see table 6.2). On the other hand, the standard deviation of the

sample error for N2 is 2.5× 10−03 and not exceeding 9× 10−03 (see table 6.3). This is

approximately, five times higher than that of C1 and C1,big. The larger single ffnn, N3

and N4, are even more inconsistent. The smallest single ffnn, N1 is not as inconsistent

as N3 or N4, but just a little bit more than N2.

The above conclusions are also supported by the scatter plots of the sample error and

the least mean squares lines fitted on them, as shown in figures 6.25, 6.26, 6.27, 6.28
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corresponding to C1, C1,big, C2, C3, respectively. In particular, it can be seen that the

sample error of C1 and C1,big deviates very little from the mean with only a few outliers

below 300 inputs; as the number of input dimensions increases, the outliers disappear.

C2 shows the same behaviour but with higher sample error levels. Its outliers are also

more. Of the entities, C3 has the widest error variation with a significant number of

outliers, especially when the number of input dimensions is less than 300.

%, %, % N1 N2 N3 N4

C1 10, 4, 86 5, 0, 95 10, 0, 90 0, 0, 100

C1,big 10, 9, 81 14, 5, 81 0, 5, 95 5, 0, 95

C2 29, 33, 38 33, 19, 48 14, 13, 71 19, 10, 71

C3 43, 52, 5 43, 24, 33 24, 9, 67 24, 5, 71

Table 6.6: VariDim, statistical significance (F-test) of the sample error results for 100

to 500 input dimensions

%, %, % N1 N2 N3 N4

C1 0, 0, 100 4, 0, 96 0, 0, 100 0, 0, 100

C1,big 4, 0, 96 0, 0, 100 0, 0, 100 0, 0, 100

C2 12, 8, 80 26, 0, 74 4, 0, 96 0, 0, 100

C3 12, 8, 80 30, 9, 61 16, 0, 84 0, 0, 100

Table 6.7: VariDim, statistical significance (F-test) of the sample error results for

more than 500 input dimensions

For a small number of input dimensions, the single ffnn’s, N1 and N2, error variation

is approximately the same as, if not less than, that of C2 and C3 but much higher than

C1 and C1,big (see figures 6.29, 6.30, 6.31, 6.32 corresponding to N1, N2, N3 and N4,

respectively). However, as the number of input dimensions increases, the outliers in

the scatter plots of the single ffnn become more, whereas the outliers in the entities’

plots either disappear (C1 and C1,big) or are significantly reduced (C2 and C3). N4 shows

the same behaviour as N1 and N2, with the difference that after 600 inputs, there is no

trend associated with the sample error but, instead, the points are scattered all over! As

far as the statistical significance test comparing the variances of the various networks

(F-test, see tables 6.6 and 6.7) is concerned, it is clear that the variance of the entities’

sample error is consistently lower than that of the single ffnn. In particular, for less

than 500 input dimensions, only C2 and C3’s variances do not differ significantly from

those of N1 and N2. The rest of the entities have lower variances than any single ffnn.

When the number of input dimensions exceeds 500, the hypothesis that an entity’s
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variance is significantly lower than that of a single FFNN is true for all entity / single

ffnn pairs. The above observations support the view that the training process12 of

the entities is more consistent than that of the single ffnn and that as the number of

input dimensions exceeds the critical value of 500, the training of single ffnn is very

inconsistent.

The following figures show the minimum, maximum, mean and standard deviation of

the sample error reached by each of the evaluated networks after a 1,000 iterations as

a function of the number of their inputs.

0

0.005

0.01

0.015

0.02

0.025

0.03

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

M
ea

n 
sq

ua
re

 e
rr

or
 (

tr
ai

ni
ng

)

ENT.NumInputs

St.Dev. Training Error
Mean Training Error

Min Training Error
Max Training Error

Figure 6.17: C1, sample error against number of inputs

12 At least for this particular benchmark.
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Figure 6.18: C1,big, sample error against number of inputs
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Figure 6.19: C2, sample error against number of inputs
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Figure 6.20: C3, sample error against number of inputs
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Figure 6.21: N1, sample error against number of inputs
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Figure 6.22: N2, sample error against number of inputs
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Figure 6.23: N3, sample error against number of inputs
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Figure 6.24: N4, sample error against number of inputs

The following figures contain scatter plots of the sample error, and least mean squares

lines fitted on them, for all evaluated networks, as the number of their inputs in-

creases.
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Figure 6.25: C1, sample error against number of inputs
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Figure 6.26: C1,big, sample error against number of inputs
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Figure 6.27: C2, sample error against number of inputs
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Figure 6.28: C3, sample error against number of inputs
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Figure 6.29: N1, sample error against number of inputs
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Figure 6.30: N2, sample error against number of inputs
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Figure 6.31: N3, sample error against number of inputs
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Figure 6.32: N4, sample error against number of inputs

6.3.6.5 VariDim: approximation error results

The entities invariably yield a lower approximation error than that of the single ffnn.

In particular, C1 yields – on average – an error of 60× 10−03, C1,big and C2 follow with

marginally higher errors of 62× 10−03 and 67× 10−03. The highest error is due to C3,
with 104× 10−03.

C1 C1,big C2 C3
C1 entity C1 (66% more weights) C2 entity C3 entity

×10−03 mean std.dev mean std.dev mean std.dev mean std.dev

lowest 46.803 1.738 49.427 2.193 55.735 4.171 87.216 3.10

average 60.036 6.780 61.410 7.509 66.779 8.831 104.12 11.49

highest 70.139 14.757 74.769 14.270 83.654 16.147 130.71 19.62

Table 6.8: VariDim, approximation error statistics for the entities

In contrast, the approximation error of the single ffnn is one and a half to two times

higher than that of the entities. In particular, N3 (note that this network has 55 %

more weights than C1) yields – on average – the lowest error among the single ffnn

with 96 × 10−03, N2, N3 and N4 follow with errors of 121 × 10−03, 125 × 10−03 and

127× 10−03, respectively.
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N1 N2 N3 N4

35% less weights standard 55% more weights 135% more weights

×10−03 mean std.dev mean std.dev mean std.dev mean std.dev

lowest 89.147 8.972 87.986 9.066 39.704 19.487 90.219 8.99

average 126.58 21.929 120.82 17.185 95.932 37.118 124.52 35.54

highest 157.49 43.722 144.23 35.327 209.83 117.39 169.87 161.16

Table 6.9: VariDim, approximation error statistics for single ffnn

The statistical significance tests comparing the mean approximation errors of the

participating networks (the t-test) show that below 500 input dimensions (see table

6.10) only N3’s approximation error is comparable to that of the entities: the null

hypothesis, H0, that the means of C1’s, C1,big’s and C2’s approximation errors do not

differ significantly from that of N3, is true by 43 %, 57 % and 43 %, respectively (see

the N3-column of table 6.10). C3’s approximation error is comparable to that of N1

and N2, higher than that of N3 but, lower than N4’s (see the C3-row of table 6.10).

%, %, % N1 N2 N3 N4

C1 0, 0, 100 0, 0, 100 43, 19, 38 0, 0, 100

C1,big 0, 0, 100 0, 0, 100 57, 24, 19 0, 0, 100

C2 0, 0, 100 0, 0, 100 43, 24, 33 0, 0, 100

C3 33, 29, 38 33, 24, 43 5, 95, 0 19, 43, 38

Table 6.10: VariDim, statistical significance (t-test) of the approximation error results

for 100 to 500 input dimensions

%, %, % N1 N2 N3 N4

C1 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C1,big 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C2 0, 0, 100 0, 0, 100 4, 0, 96 0, 0, 100

C3 4, 0, 96 4, 0, 96 48, 12, 40 8, 0, 92

Table 6.11: VariDim, statistical significance (t-test) of the approximation error results

for more than 500 input dimensions

When the number of input dimensions exceeds 500, the generalisation ability of the

entities is clearly superior. In particular, the hypothesis H2 that the mean of an entity’s

approximation error is lower than that of a single ffnn is true by 100 % (see the top

3 rows of table 6.11). Even C3 is now doing much better than N1, N2 and N4. Its

performance is comparable to that of N3, even if N3 has twice as many weights.
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The approximation error of all entity models is clearly independent of, if not decreasing

with, the number of input dimensions. This can be seen from the graphs of the mean

approximation error for C1, C1,big, C2 and C3 contained in figures 6.33, 6.34, 6.35 and

6.36, respectively. This conclusion is further supported by examination of the scatter

plots and the lines fitted on them, depicted in figures 6.41, 6.42, 6.43 and 6.44, for C1,
C1,big, C2 and C3 respectively.

%, %, % N1 N2 N3 N4

C1 19, 0, 81 33, 0, 67 0, 0, 100 10, 0, 90

C1,big 52, 0, 48 57, 0, 43 0, 0, 100 29, 0, 71

C2 38, 5, 57 47, 5, 48 0, 0, 100 38, 5, 57

C3 76, 10, 14 80, 10, 10 5, 0, 95 52, 5, 43

Table 6.12: VariDim, statistical significance (F-test) of the approximation error re-

sults for 100 to 500 input dimensions

%, %, % N1 N2 N3 N4

C1 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C1,big 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C2 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C3 0, 0, 100 26, 0, 74 0, 0, 100 0, 0, 100

Table 6.13: VariDim, statistical significance (F-test) of the approximation error re-

sults for more than 500 input dimensions

In particular, the approximation error of C1 is almost constant. This is indicated by

the slope of the least mean squares line fitted on the scattered points; it is almost zero

(−3.2× 10−06). The same can be said for C1,big (the slope is −5.7× 10−06) and C2 (the

slope is −5.6 × 10−06). C3 follows a rather strange “wavy” pattern which contributes

to its large standard deviation value. Notice also that all slopes, no matter how small,

are negative, thus showing a descending trend.

The single ffnn’s generalisation ability consistently shows a strong dependence on the

number of input dimensions: it decreases (e.g. the approximation error increases)

as the number of input dimensions increases. This is evident from the scatter plots

of N1, N2, N3 and N4, in figures 6.45, 6.46, 6.47 and 6.48, respectively. The least

mean squares lines fitted on these scattered points have a large positive slope which

indicates an increasing trend. In particular, the standard ffnn, N2, has the smallest

slope with 42× 10−06, whereas N3 has a slope of 165× 10−06. The corresponding slope

values for N1 and N4 are somewhere in between these two extremes with 65 × 10−06
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and 71× 10−06, respectively.

The statistical significance tests comparing the variance of approximation error of the

participating networks (the F-test) reveal that for a number of input dimensions higher

than 500, the variance of all the entity networks is significantly lower than that of any

single ffnn. For lower dimensions, only N1’s and N2’s variances are comparable to

that of the entities.

It is important to note that for the whole range of input dimensions, the variance of

N3 is higher than that of any entity 100 % of the times (see the N3-column of tables

6.12 and 6.13). Thus, the benefits gained by the low approximation error of N3 are

nullified by its large inconsistency. This inconsistency gets larger as the number of

input dimensions increases.

Some more conclusions can be drawn by visual inspection of the scatter plots:

Firstly, there is a striking difference between the compactness of the plots for the entities

and the single ffnn. For example compare the scatter plots of C1 and C1,big (figures

6.41 and 6.42) to the plots of N2 and N3 (figures 6.46 and 6.47).

Secondly, whereas the entities’ approximation error remains constant or, in some cases,

it even decreases with the increasing number of input dimensions, the single ffnn’s

approximation error increases.

Thirdly, the number of points which significantly deviate from the mean (outliers) for

the case of the majority of the entity models is insignificant (e.g. C1 and C1,big) or

just very small (C2). Furthermore, these outliers are reduced as the number of input

dimensions increases. The opposite is observed for the single ffnn: when the number

of input dimensions is small, the outliers are not so many but they become more and

more as the number of inputs increases. Evidence of this can also be found in figures

6.33 to 6.40. In particular, the standard deviation plots for the entities (figures 6.33

to 6.36) are, in general, non-increasing whereas the corresponding curves for the single

ffnn (contained in the other four figures, 6.37 to 6.40) show a clearly increasing trend.
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The following figures show the minimum, maximum, mean and standard deviation of

the approximation error of each of the evaluated networks after a 1, 000 iterations as

a function of the number of their inputs.
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Figure 6.33: C1, approximation error against number of inputs
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Figure 6.34: C1,big, approximation error against number of inputs
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Figure 6.35: C2, approximation error against number of inputs
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Figure 6.36: C3, approximation error against number of inputs



118 chapter vi

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

M
ea

n 
sq

ua
re

 e
rr

or
 (

ov
er

al
l)

SIN.NumInputs

St.Dev. Error
Mean Error

Min Error
Max Error

Figure 6.37: N1, approximation error against number of inputs
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Figure 6.38: N2, approximation error against number of inputs
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Figure 6.39: N3, approximation error against number of inputs
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Figure 6.40: N4, approximation error against number of inputs
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The following figures contain scatter plots of the approximation error, and least mean

squares lines fitted on them, for all evaluated networks, as the number of their inputs

increases.
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Figure 6.41: C1, approximation error against number of inputs
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Figure 6.42: C1,big, approximation error against number of inputs
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Figure 6.43: C2, approximation error against number of inputs
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Figure 6.44: C3, approximation error against number of inputs
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Figure 6.45: N1, approximation error against number of inputs
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Figure 6.46: N2, approximation error against number of inputs
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Figure 6.47: N3, approximation error against number of inputs
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Figure 6.48: N4, approximation error against number of inputs



124 chapter vi

6.3.7 Generalisation Ability: the ConsDim test

6.3.7.1 ConsDim: Methodology

In this test we are interested in the performance (training time, sample error and

approximation error) of the networks when, for a given number of input dimensions,

the number of vectors in their training set increases. The networks’ configuration and

number of weights remains constant throughout this test.

The procedure for ConsDim is outlined below:

• The networks to be tested are described in the following table:

NAME DESCRIPTION

C1 a C1 entity model with 12, 625 weights

C1,big a C1 entity model with 20, 010 weights

C2 a C2 entity model with 12, 340 weights

C3 a C3 entity model with 12, 340 weights

N1 a single ffnn with 12, 525 weights (arch: 500× 25× 1)

N2 a single ffnn with 20, 040 weights (arch: 500× 40× 1)

N3 a single ffnn with 25, 050 weights (arch: 500× 50× 1)

N4 a single ffnn with 30, 060 weights (arch: 500× 60× 1)

Table 6.14: ConsDim: description of the evaluated networks

• each ffnn unit of the entity models had 12 to 35 inputs, one hidden layer of 10

to 20 units, and a single output,

• the number of training vectors was varied from 20 to 220 (step 10) and the input

dimensions were fixed at 500,

• for each different training data set the entities and the single ffnn were trained

for 1, 000 iterations,

• the test data consisted of 2, 000 vectors. None of these vectors was used for

training. The final sample and approximation errors were calculated using the

mean squared error measure (see equation 3.6 on page 27),

• for a given number of training vectors, the training / test procedure was repeated

for 50 times with the same data and network architecture but with different

starting weights. The training time and sample and approximation errors were

recorded for each of these training attempts and then the maximum, minimum,

mean and standard deviation were calculated as follows:
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procedure ConsDim:

produce neural network/entity

calculate total number of weights, numW

for number of training vectors i := 20 to 220 step 10 do

produce training data set

produce test data set

initialise sum and sumsum to zero

reset minimum errori and maximum errori

for training attempts j := 1 to 50 do

initialise weights to random

train neural network/entity for 1,000 iterations

test neural network/entity

calculate errorij using equation for mean squared error

store errorij

update minimum errori := minimum of (errorij and minimum errori)

update maximum errori := maximum of (errorij and maximum errori)

sum := sum + errorij

sumsum := sumsum + error2ij

end

mean errori := sum
50

standard deviation of errori :=
√
( sumsum

50 − (mean error2i ))

store minimum errori and maximum errori

store mean errori and standard deviation of errori

end

end ConsDim.

• the quantities minimum errori, maximum errori, mean errori and standard devi-

ation of errori were plotted against the total number of training vectors, i. See,

for example, figure 6.57 which refers to the sample error of the C1 entity network.

• the values of errorij were plotted (as scattered points) against the number of

training vectors, i. See, for example, figure 6.65 which refers to the sample error

results of the C1 entity network.

• the mean, lowest and highest values of average errori and standard deviation

of errori over the whole range of training vectors are shown in various tables

throughout the rest of this chapter. See, for example, table 6.15 which refers to

the sample error results of all the entity networks.
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6.3.7.2 ConsDim: training time results

The training time of all networks, both entities and single ffnn, is directly propor-

tional to the number of training examples. This is confirmed by figures 6.49, 6.50, 6.51,

6.52, 6.53, 6.54, 6.55 and 6.56, which depict the relationship of training time of the

networks C1, C1,big, C2, C3, N1, N2, N3 and N4 and the number of training vectors.

Again, although the experiments were performed on computers of equal CPU power,

the effects of network traffic are noticeable.

The following figures depict the relationship between training time and the number

of training vectors. In particular, four quantities are plotted: minimum, maximum,

mean and standard deviation of training time, for 1, 000 iterations.
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Figure 6.49: C1, training time against number of training vectors



6.3. GENERALISATION ABILITY 127

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500
11000

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

T
im

e 
(s

ec
s)

TRAIN_DATA.NumLines

St.Dev. Training time (secs)
Mean Training time (secs)

Min Training time (secs)
Max Training time (secs)

Figure 6.50: C1,big, training time against number of training vectors
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Figure 6.51: C2, training time against number of training vectors
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Figure 6.52: C3, training time against number of training vectors
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Figure 6.53: N1, training time against number of training vectors
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Figure 6.54: N2, training time against number of training vectors

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500
11000

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

T
im

e 
(s

ec
s)

TRAIN_DATA.NumLines

St.Dev. Training time (secs)
Mean Training time (secs)

Min Training time (secs)
Max Training time (secs)

Figure 6.55: N3, training time against number of training vectors
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Figure 6.56: N4, training time against number of training vectors

6.3.7.3 ConsDim: sample error results

Figures 6.57, 6.58, 6.59 and 6.60 indicate that all entity models reach a very low sample

error which, however, increases slightly with the increasing number of training vectors.

C1,big achieves the lowest error among the entities (see table 6.15) with 0.8 × 10−03,

on average. Also, the slope of the least mean squares line fitted on the scatter points

representing its sample error values (see figure 6.66) is, again, the lowest with 7×10−06.

Its training is consistent and there are very few outliers beyond the 5 × 10−03 error

level.

The same can be said for C1, although its sample error is, on average, slightly higher

with 1 × 10−03. The corresponding least mean squares line has a slope of 11 × 10−06

(figure 6.65).

C3’s sample error increases with the greatest rate among the entities, with a slope

of 21× 10−06 (figure 6.68). Additionally, its sample error is, on average, 2.2× 10−03,

e.g. double than that of C1. Its variation is, also, twice as much.

The variation of sample error, among the entity networks, increases as the number

of training examples increases, but, even so, it is still very low compared to that of the

single ffnn.
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The single ffnn, on the other hand, yield a much higher sample error than that of

the entity networks. N1 has the lowest sample error, among the single ffnn, with

2.9 × 10−03 (see table 6.16). N2, N3 and N4 follow with 4.2 × 10−03, 8.6 × 10−03 and

15.6× 10−03, respectively.

C1 C1,big C2 C3
C1 (12,625) C1 (20,010 weights) C2 (12,340 weights) C3 (12,340 weights)

×10−03 mean std.dev mean std.dev mean std.dev mean std.dev

lowest 0.144 0.124 0.094 0.050 0.054 0.033 0.04 0.033

average 0.956 0.755 0.784 0.668 1.523 1.317 2.163 1.443

highest 3.018 2.728 1.722 2.016 3.693 3.615 4.837 3.267

Table 6.15: ConsDim, sample error statistics for the entities

N1, standard N2 N3 N4

(12,525 weights) (20,040 weights) (25,050 weights) (30,060 weights)

×10−03 mean std.dev mean std.dev mean std.dev mean std.dev

lowest 0.005 0.024 0.120 0.332 0.687 0.813 2.845 2.920

average 2.917 3.812 4.208 4.332 8.581 13.170 15.608 23.590

highest 6.134 8.609 7.902 8.403 24.896 74.533 25.888 44.783

Table 6.16: ConsDim, sample error statistics for single ffnn

Visual inspection of the scatter plots (figures 6.65, 6.66, 6.67, 6.68, 6.69, 6.70 and 6.71

for the networks C1, C1,big, C2, C3, N1, N2, N3 and N4, respectively) reveals that the

sample error of the single ffnn is too high after 100 training vectors, whereas the

sample error of the entities is much lower. Adding more weights to the network does

not remedy the situation – on the contrary, the outliers of N3 and, in particular, of N4

increase dramatically. Notice also how small is the difference between the mean and

standard deviation of the sample errors of C1 and C1,big ( C1,big having almost twice as

many weights as C1, and both networks belonging to the same entity class) networks.

The statistical significance tests comparing themeans of the sample error of the entities

and the single ffnn (the t-test) indicate that for less than 120 training vectors, the H2

hypothesis (e.g. that the mean of the entities’ error is significantly lower than that of

the single ffnn) is true by 70 % to 90 % (with the exception of C3 when compared to

N1 – their means do not seem to differ significantly, see table 6.17).

When the number of training vectors exceeds 120, the H2 hypothesis is true by almost

100 % (see table 6.18).
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%, %, % N1 N2 N3 N4

C1 18, 18, 64 18, 0, 82 18, 0, 82 27, 0, 73

C1,big 18, 18, 64 18, 0, 82 9, 0, 91 27, 0, 73

C2 18, 27, 55 9, 0, 91 9, 0, 91 27, 0, 73

C3 64, 9, 27 36, 0, 64 27, 0, 73 27, 0, 73

Table 6.17: ConsDim, statistical significance (t-test) of the sample error results for

10 to 120 training vectors

%, %, % N1 N2 N3 N4

C1 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C1,big 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C2 22, 0, 78 0, 0, 100 0, 0, 100 0, 0, 100

C3 44, 0, 56 11, 0, 89 0, 0, 100 0, 0, 100

Table 6.18: ConsDim, statistical significance (t-test) of the sample error results for

more than 120 training vectors

%, %, % N1 N2 N3 N4

C1 9, 18, 73 0, 0, 100 9, 0, 91 0, 0, 100

C1,big 18, 9, 73 0, 0, 100 0, 0, 100 0, 0, 100

C2 9, 9, 82 9, 0, 91 0, 0, 100 0, 0, 100

C3 36, 0, 64 0, 0, 100 0, 0, 100 0, 0, 100

Table 6.19: ConsDim, statistical significance (F-test) of the sample error results for

10 to 120 training vectors

%, %, % N1 N2 N3 N4

C1 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C1,big 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C2 11, 0, 89 0, 0, 100 0, 0, 100 0, 0, 100

C3 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

Table 6.20: ConsDim, statistical significance (F-test) of the sample error results for

more than 120 training vectors

As far as the variation of the sample error is concerned, the relevant statistical signifi-

cance tests (the F-test, see tables 6.19 and 6.20) indicate that for any number of training

vectors (both below and over 120) the H2 hypothesis is always true. It approaches 100

% for more than 120 training vectors. This proves that the entities’ training is more

consistent than that of single ffnn and that the consistency of the latter deteriorates

with the increasing number of training examples.
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The following figures contain plots of the minimum, maximum, mean and standard

deviation of sample error against the number of training vectors.
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Figure 6.57: C1, sample error against number of training vectors
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Figure 6.58: C1,big, sample error against number of training vectors
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Figure 6.59: C2, sample error against number of training vectors
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Figure 6.60: C3, sample error against number of training vectors
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Figure 6.61: N1, sample error against number of training vectors
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Figure 6.62: N2, sample error against number of training vectors
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Figure 6.63: N3, sample error against number of training vectors

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

M
ea

n 
sq

ua
re

 e
rr

or
 (

tr
ai

ni
ng

)

TRAIN_DATA.NumLines

St.Dev. Training Error
Mean Training Error

Min Training Error
Max Training Error

Figure 6.64: N4, sample error against number of training vectors
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The following figures contain scatter plots of the sample error for all evaluated networks

as the number of training vectors increases.
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Figure 6.65: C1, sample error against number of training vectors
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Figure 6.66: C1,big, sample error against number of training vectors
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Figure 6.67: C2, sample error against number of training vectors
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Figure 6.68: C3, sample error against number of training vectors
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Figure 6.69: N1, sample error against number of training vectors
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Figure 6.70: N2, sample error against number of training vectors
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Figure 6.71: N3, sample error against number of training vectors
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Figure 6.72: N4, sample error against number of training vectors
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6.3.7.4 ConsDim: approximation error results

The approximation error results for the entity networks are all quite satisfactory with,

perhaps, the exception of C3 which yields a one and a half times higher error than that

of C1 and C1,big. In particular, the best generalisation ability is exhibited by C1,big with

an approximation error of 64 × 10−03, on average (see table 6.21). C1 and C2 follow

with the slightly higher errors of 70 × 10−03 and 77 × 10−03, respectively. C3 gives

an error of 104 × 10−03 – a relatively high value compared to that of the other entity

networks but, still, lower than that of any of the single ffnn.

C1 C1,big C2 C3
C1 entity C1 (66% more weights) C2 entity C3 entity

×10−03 mean std.dev mean std.dev mean std.dev mean std.dev

lowest 57.635 3.503 54.579 5.846 61.900 5.914 93.244 5.841

average 69.687 10.368 63.825 9.083 76.579 15.310 104.20 8.823

highest 106.18 27.649 79.008 15.257 91.036 26.143 134.54 18.34

Table 6.21: ConsDim, approximation error statistics for the entities

N1 standard N2 N3 N4

(12,525 weights) (20,040 weights) (25,050 weights) (30,060 weights)

×10−03 mean std.dev mean std.dev mean std.dev mean std.dev

lowest 116.14 14.027 110.87 2.882 107.29 12.002 113.09 20.48

average 123.97 19.056 117.48 13.933 118.53 19.645 129.28 33.35

highest 142.72 24.310 125.55 23.049 125.30 34.933 139.26 78.06

Table 6.22: ConsDim, approximation error statistics for single ffnn

The approximation error plots of the entities (see, for example, the minimum, max-

imum, mean and standard deviation plots of error in figures 6.73, 6.74, 6.75 and 6.76

or the scatter plots in figures 6.81, 6.82, 6.83 and 6.84 for C1, C1,big, C2 and C3, re-
spectively) indicate that, as the number of training examples increases, the error value

follows a parabolic locus with its minimum (e.g. the number of training vectors required

for optimum training with 1, 000 iterations) at about 100.

One may also observe that C1, C1,big and C3 networks have a much more consistent

generalisation behaviour than C2. This is indicated by the fact that these networks’

scatter plots show a significantly smaller number of outliers. Additionally, the standard

deviation of C2 is 15 × 10−03 compared to the values of 10 × 10−03, 9 × 10−03 and

8.8× 10−03 for C1, C1,big and C3, respectively. The results of the statistical significance

F-test (see tables 6.25 and 6.26) also confirm this conclusion.
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From a first glance, the approximation error of all single ffnn networks is, on average,

much higher than that of the entities. The standard single ffnn network N1, which

has the same number of weights as C1, yields an approximation error of 124 × 10−03

(see table 6.22) – this is twice as much as that of C1.

%, %, % N1 N2 N3 N4

C1 9, 0, 91 0, 0, 100 9, 0, 91 9, 0, 91

C1,big 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C2 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C3 18, 0, 82 36, 9, 55 27, 18, 55 27, 0, 73

Table 6.23: ConsDim, statistical significance (t-test) of the approximation error re-

sults for 10 to 120 training vectors

%, %, % N1 N2 N3 N4

C1 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C1,big 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C2 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

C3 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

Table 6.24: ConsDim, statistical significance (t-test) of the approximation error re-

sults for more than 120 training vectors

The generalisation ability of the single ffnn remains largely the same as the number

of their weights increases: N2 and N3 have an error of 118 × 10−03 and N4 has an

error of 129 × 10−03. However, the variation of error – indicated by the presence of

a large number of outliers in the scatter plots in figures 6.69, 6.86, 6.87 and 6.88 (for

the single ffnn N1, N2, N3 and N4, respectively), and by the high values of standard

deviation – is such that makes the single ffnn candidates, with the exception of N2,

very inconsistent.

Another indication of this huge variation in the approximation error of the single ffnn

is the large difference between the minimum and maximum error values corresponding

to the same number of training vectors. This can be seen in the plots of figures 6.77,

6.78, 6.79 and 6.80 for N1, N2, N3 and N4, respectively.

The results of the statistical significance test comparing the differences between the

means of the approximation error of the entities and single ffnn (the t-test) indicate

that for a number of training vectors below 120 (see table 6.23), the H2 hypothesis is

clearly true (by 100 %) for the entity networks C1, C1,big and C2. This percentage is

lower for C3.
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When the number of training vectors exceeds 120 (see table 6.24), the superiority of

the entities generalisation ability over that of single ffnn is absolute. The acceptance

of the H2 hypothesis is by 100 %.

The statistical significance tests comparing the variances of the different networks (the

F-test) shows that for less than 120 training vectors, the variation of the entities ap-

proximation error is lower than or, at most comparable to that of the single ffnn (see

table 6.25).

%, %, % N1 N2 N3 N4

C1 27, 0, 73 27, 18, 55 45, 0, 55 9, 0, 91

C1,big 0, 0, 100 27, 9, 64 27, 0, 73 0, 0, 100

C2 27, 0, 73 64, 18, 18 36, 0, 64 9, 0, 91

C3 18, 0, 82 27, 9, 64 18, 0, 82 0, 0, 100

Table 6.25: ConsDim, statistical significance (F-test) of the approximation error

results for 10 to 120 training vectors

%, %, % N1 N2 N3 N4

C1 11, 0, 89 33, 0, 67 0, 0, 100 0, 0, 100

C1,big 0, 0, 100 33, 0, 67 0, 0, 100 0, 0, 100

C2 44, 11, 45 56, 33, 11 44, 0, 56 44, 0, 56

C3 0, 0, 100 22, 0, 78 0, 0, 100 0, 0, 100

Table 6.26: ConsDim, statistical significance (F-test) of the approximation error

results for more than 120 training vectors

For a number of training vectors greater than 120, the acceptance of the H2 hypothesis

is overwhelming, at least when comparing C1, C1,big and C3 with all the other single

ffnn (see table 6.26). For C2, this variation is either equal to that of the singe ffnn

or lower.
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The following figures contain plots of the minimum, maximum, mean and standard

deviation of approximation error against the number of training vectors.
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Figure 6.73: C1, approximation error against number of training vectors
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Figure 6.74: C1,big, approximation error against number of training vectors
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Figure 6.75: C2, approximation error against number of training vectors
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Figure 6.76: C3, approximation error against number of training vectors



146 chapter vi

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.21
0.22
0.23
0.24
0.25
0.26
0.27

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

M
ea

n 
sq

ua
re

 e
rr

or
 (

ov
er

al
l)

TRAIN_DATA.NumLines

St.Dev. Error
Mean Error

Min Error
Max Error

St.Dev. Error

Figure 6.77: N1, approximation error against number of training vectors
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Figure 6.78: N2, approximation error against number of training vectors
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Figure 6.79: N3, approximation error against number of training vectors
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Figure 6.80: N4, approximation error against number of training vectors
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The following figures contain scatter plots of the approximation error of all evaluated

networks as the number of training vectors increases.
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Figure 6.81: C1, approximation error against number of training vectors
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Figure 6.82: C1,big, approximation error against number of training vectors
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Figure 6.83: C2, approximation error against number of training vectors
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Figure 6.84: C3, approximation error against number of training vectors
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Figure 6.85: N1, approximation error against number of training vectors
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Figure 6.86: N2, approximation error against number of training vectors
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Figure 6.87: N3, approximation error against number of training vectors
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Figure 6.88: N4, approximation error against number of training vectors
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6.4 Parallelisation of the training process

6.4.1 Introduction

In section 5.8 on page 78 it was argued that one of the advantages of the entities

over the single ffnn networks is that the structure of the former favours coarse-grain

parallelism as opposed to the fine-grain parallelism inherent in the architecture of the

latter. In this section we will present the results of tests carried out to compare the

training times of a C1 entity model in sequential and parallelised modes of operation.

The parallelisation scheme used was a very simple one. At first, the network’s units are

grouped according to their respective layers. Secondly, the units of the first layer are

divided evenly among the available processors and their training is done concurrently.

When all first layer units are trained, the procedure repeats with the units of the

second layer, until all the units of the entity are trained. After each layer is processed,

the weights are transfered to a central store where the test procedure will take place

sequentially. All the test scripts were written in the npnp language and can be found in

appendix G on page 223. Note that parallelising the training procedure of the entities

does not require a specific parallel hardware platform. All is needed are some networked

workstations talking TCP/IP and running Unix.

There were four C1 entity networks of different sizes, participating in this test. Their

architecture is detailed the following table:

NAME DESCRIPTION

P1 500 inputs, 32 units, 13, 030 weights

P2 1, 000 inputs, 60 units, 26, 035 weights

P3 1, 500 inputs, 91 units, 39, 120 weights

P4 2, 000 inputs, 120 units, 52, 490 weights

Table 6.27: Parallelised training, description of the evaluated networks

Each network was trained for 1, 000 iterations on the same data set. In the first instance,

training was done sequentially, that is, in exactly the same way as with all the networks

of VariDim and ConsDim in section 6.3. In the second instance, the training process

was split evenly among four different workstations of equal CPU power. Each network’s

training procedure, either in parallel or sequential mode, was repeated for 50 times and

the training time was recorded each time. Theminimum, maximum, mean and standard

deviation of the training time, calculated over the 50 repeats, are presented in table

6.28.
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It should be noted that the purpose of this test is not to measure exactly the differ-

ence in training time between sequential and parallelised training schemes but rather to

demonstrate the ability of the entities to be parallelised efficiently.

On the one hand, the parallelisation methodology and algorithms employed are not the

best or the most efficient. More experimentation and in-depth knowledge of computer

networking and theUnix programming environment would have probably yielded better

parallelisation schemes.

On the other hand, the computer resources at our disposal could not be used ex-

clusively for the purposes of these simulations. For example, a factor that determines

training time in such parallelised schemes is the traffic of the computer network and the

load in accessing the file system (our central store). These parameters are determined

by the number of users and what they are doing at a given instance – something which

was largely beyond our control.

Almost none of these restrictions exist when training is done sequentially and on a

single user machine.

6.4.2 Results and discussion

P1 P2 P3 P4

network

sizes

inputs 500 1, 000 1, 500 2, 000

weights 13, 030 26, 035 39, 120 52, 490

ffnn units 32 60 91 120

sequential

training

time

(seconds)

minimum 992 1, 977 2, 711 3, 539

maximum 1, 026 2, 030 2, 739 3, 577

stand. dev. 9.22 10.11 8.1 8.71

mean 1,009 1,997 2,727 3,555

parallelised

training

time

(seconds)

minimum 577 859 987 1,273

maximum 645 895 1, 003 1, 312

std. dev. 14.88 8.25 9.33 8.78

mean 595 879 993 1,296

Table 6.28: Parallelised and sequential training time results

The results of the Parallelisation test are presented in table 6.28. For each network,

its size (e.g. number of inputs, weights and ffnn units) and the minimum, maximum,

mean and standard deviation of the corresponding training time, calculated over the

50 repeats, are reported.
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These results indicate that there are significant benefits to be gained from parallelising

the training procedure of the entities.

In particular, the time required by P1 networks trained sequentially is, on average, 1, 009

seconds. This is 69.6%13 more than the 595 seconds required by the same networks

when trained in parallel.
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Figure 6.89: Comparison of training times for sequential and parallelised training

schemes

When the number of weights is doubled (e.g. P2), the sequential training requires 1, 997

seconds to complete, compared to 879 seconds for the parallelised training scheme of

the same network; this makes the sequential training process 127.2% slower than the

parallelised equivalent. Similar results hold for P3 and P4 networks where the difference

between sequential and parallelised training times is 161.8% and 173.4%, respectively.

Figure 6.89 contains bar charts of the training time against the total number of

weights for sequential and parallelised training. Least mean squares lines have also

been fitted on each of the two charts with a very high correlation (99%). These lines

have slopes of 63.7× 10−03 and 17× 10−03 for the sequential and parallelised schemes,

13 The calculation is as follows: 1,009−595
595

× 100% = 69.6%.
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respectively. The equations of the least mean squares lines (ts for sequential and tp for

parallelised), as a function of the total number of weights (w) are given below:

ts = 0.064 w + 242.6 (6.3)

tp = 0.018 w + 382.2 (6.4)
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Figure 6.90: Plot of ts/p(w) against the total number of weights, w

The above equations will be used in order to derive an expression for the training

time benefits obtained from using parallelised instead of sequential training, for a given

number of weights. For this purpose we may use the following percentage:

ts/p(w) =
ts − tp
tp

× 100% =
0.064 w + 242.6− 0.018 w − 382.2

0.018 w + 382.2
× 100%

=
0.046 w − 139.6

0.018 w + 382.2
× 100% (6.5)

A plot of ts/p(w) against the number of weights, w is shown in figure 6.90. The hori-

zontal asymptote of ts/p(w), for positive w, is at:

Ts/p = lim
w→∞

ts/p(w) =
0.064

0.046
× 100% = 255.56% (6.6)

In conclusion, it can be said that for large w, the time required for sequential training of

a C1 entity is longer by more than 250%, compared to the time taken by a parallelised

version of the same procedure distributed over four workstations.
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6.5 Summary and conclusions

6.5.1 Generalisation Ability

The first test (VariDim) under the Generalisation Ability category aimed at in-

vestigating the effects of increasing the number of input dimensions on the overall

performance of the participating networks. Below are the conclusions and supporting

evidence in terms of the sample and approximation error results.

VariDim, sample error: The conclusions drawn from the sample error (e.g. the error

on the training set) results of this test are the following:

1. For a small number of input dimensions (less than 500), the training of C1 and

C1,big entity networks is much more consistent than that of single ffnn. The

training of C2 and C3 is as consistent as that of single ffnn. When the number of

input dimensions exceeds 500, the training of all entities is more consistent than

that of single ffnn. This implies that the entities’ error surface is smoother and

the number of local minima fewer than those in the respective single ffnn.

2. As the number of input dimensions increases, the consistent training of the entity

networks improves, thus they appear to be virtually unaffected by the curse of

dimensionality and other problems which usually plague single ffnn with a lot

of inputs.

These conclusions are supported by the following evidence:

1. The statistical significance tests comparing the variances of the entity and single

ffnn networks (the F-test) indicate that for a number of input dimensions less

than 500, the hypothesis that the variance of the entities is lower than that of

single ffnn, e.g. H2 is always true for C1 and C1,big (the top two rows of table

6.6).

As far as training consistency is concerned, the superiority of the entities over the

single ffnn is obvious, especially when the number of input dimensions exceeds

500. In this case, the F-test results, outlined in table 6.7, show that the H2

hypothesis is always true and by as much as 100 %.

2. The best entity’s standard deviation (see table 6.2 on page 101, C1 entity) is, on

average, 0.4× 10−03. The best single ffnn’s standard deviation (see table 6.3 on

page 101, N2 single ffnn) is, on average, 2.5× 10−03 – a difference of more than

500%.
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3. The scatter plots in figures 6.25 on page 108 to 6.28 on page 110, associated with

the sample error of the entities, show that outliers do exist but their number

decreases as the number of input dimensions increases.

4. The scatter plots in figures 6.29 on page 110 to 6.32 on page 112, associated with

the sample error of the single ffnn, show that the number of outliers increases as

the number of input dimensions increases. Adding more weights to these networks

does not remedy the situation – on the contrary it makes it worse.

VariDim, approximation error: The conclusions that can be drawn after examination

of the approximation error results of VariDim are the following:

1. The entities generalise better than single ffnn.

2. The entities’ generalisation ability is not reduced by the increasing number of

input dimensions – on the contrary, it increases.

3. The entities’ generalisation ability is more consistent than that of single ffnn.

These conclusions are supported by the following evidence:

1. The best entity’s approximation error (see table 6.8 on page 112, C1 entity) is, on
average, 60× 10−03. The best single ffnn approximation error (see table 6.9 on

page 113, N3) is, on average, 96× 10−03 – a difference of 60%. Observe that the

single ffnn has 55% more weights than the entity and that its standard deviation

is 445% more than the entity’s (e.g. 37× 10−03 compared to 6.78× 10−03)!

2. The statistical significance tests comparing the means of the approximation error

of the entities and single ffnn (the t-test, see table 6.10) indicate that very rarely

the hypothesis that a single ffnn’s error is lower than that of any entity is

accepted. For example, this happens only below 500 input dimensions and when

comparing N3 with all the entities (the N3 column of table 6.10) or C3 with all

the single ffnn (the C3 row of table 6.10).

For a number of input dimensions larger than 500, the H2 hypothesis that the

mean of the approximation error is significantly lower than that of the single

ffnn is always accepted and often with a percentage of 100 % (except when

comparing C3 with N3 – they are comparable, see table 6.11).

3. The best entity’s standard deviation is, on average, 6.78×10−03 (this is C1, the best
generaliser) whereas the best single ffnn average standard deviation is 17×10−03

(this is N2) – a difference of 150%. Observe that among the single ffnn, the best

generaliser (e.g. N3) is not the most consistent one (e.g. N2).
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4. The statistical significance tests comparing the variances of the different networks

(the F-test) show that, when the number of input dimensions is below 500, the

variance of the approximation error of the entities is either comparable or lower

than that of the single ffnn (see table 6.12), but, for a larger number of input

dimensions (exceeding 500) the superiority of the entities, as far as training con-

sistency is concerned, is indisputable with acceptance of the H2 hypothesis by

100 % (see table 6.13).

5. All least mean squares lines fitted on the scatter plots of the entities (in fig-

ures 6.41 on page 120 to 6.44 on page 121) have negative slopes, indicating a

decreasing trend of the approximation error with the increasing number of input

dimensions. In contrast, the respective plots for the single ffnn (in figures 6.45

on page 122 to 6.48 on page 123) indicate a clearly increasing trend.

6. The outliers appearing in the entities’ scatter plots are very few and the plots

appear very compact. In contrast, the outliers in the single ffnn’s scatter plots

are much more and increase with the increasing number of dimensions.

The second test (ConsDim) under the generalisation Ability category aimed at investi-

gating the effects of increasing the number of training vectors on the overall performance

of the participating networks whose sizes were kept fixed. Below are the conclusions

and supporting evidence in terms of the sample and approximation error results.

ConsDim, sample error: The conclusions drawn from the sample error results of this

test are the following:

1. The entities’ training is very consistent compared to that of single ffnn.

2. The entities’ training consistency decreases with the increasing number of training

vector but at a much slower pace than that of single ffnn. Therefore, it can be

said, that the entities are more flexible because they can be trained equally well

for a wide range of training vector numbers without any side effects. The single

ffnn, on the other hand, suffers serious side effects when the number of training

vectors 100.

These conclusions are supported by the following evidence:

1. The best entity’s standard deviation of the sample error is, on average, 0.668×
10−03. The best single ffnn average standard deviation is 3.8×10−03 – a difference

of more than 450%.



6.5. SUMMARY AND CONCLUSIONS 159

2. The statistical significance tests comparing the variances of the different networks

(the F-test) show that for more than 120 training vectors, the H2 hypothesis is

accepted by 100 % (table 6.20).

For a number of training vectors less than 120, the acceptance of theH2 hypothesis

is almost as absolute as above with, perhaps, the exception of N1 (see table 6.19,

the N1 column), where it is only by 70 %.

3. All least mean squares lines fitted on the entities’ scatter plots (in figures 6.65 on

page 137 to 6.68 on page 138) have positive slopes. This indicates an increasing

trend of the sample error with the increasing number of training vectors. The

same applies for the case of the scatter plots of single ffnn (in figures 6.69 on

page 139 to 6.72 on page 140). The difference between the entity networks and

single ffnn is quantitative: the slopes of the former range from 7 × 10−06 to

20× 10−06, whereas the latter’s range from 33× 10−06 to 52× 10−06.

ConsDim, approximation error: The conclusions drawn from the approximation error

results of this test are the following:

1. The entities are better generalisers than single ffnn for the whole range of the

number of training vectors.

2. The entities are more consistent generalisers than the single ffnn.

3. The entities, particularly those of class 1 and 3, have their lowest approximation

error when the number of training vectors is about 100.

These conclusions are supported by the following evidence:

1. The best entity’s approximation error is, on average, 63× 10−03 (see table 6.21

on page 141, C1,big) and does not fall below (again C1,big) 54 × 10−03. The best

single ffnn’s approximation error is, on average, 117× 10−03 (see table 6.22 on

page 141, N2) and does not fall below 107× 10−03 (N3).

2. The statistical significance tests comparing the means of the approximation error

(the t-test) of the various networks when the number of training vectors is less

than 120, show that the H2 hypothesis is true for all entities with as high a

percentage as 100 % (see table 6.23). C3 is an exception with lower confirmation

percentages ranging from 55 % to 82 % (see the C3 row table 6.23).

When the number of training vectors is more than 120, the hypothesis that the

mean approximation error of the entities is lower than that of any single ffnn

(e.g. the H2 hypothesis) is accepted absolutely by 100 % (see table 6.24).
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3. The best entity’s standard deviation of the approximation error is 8.8 × 10−03

(table 6.21 on page 141, C3) while the best single ffnn’s is 13.9×10−03 (table 6.22

on page 141, N2).

4. The statistical significance tests comparing the variances of the different networks

(the F-test) for a number of training vectors less than 120, show that in most

cases the H2 hypothesis is true. In a few other cases, however, the null hypothesis

– e.g. that the variances of the two tested networks do not differ significantly –

seems to be true (see table 6.25).

When the number of training vectors exceeds 120, the situation improves and

the confirmation of the H2 hypothesis is more substantial. The null hypothesis is

mainly true when comparing the C2 entity with all single ffnn (see table 6.26,

the C2 row).

5. Almost all single ffnn’s scatter plots show a large number of outliers compared

to those appearing tin the scatter plots of the entities.

6.5.2 Parallelisation of training

The test comparing the times required to train a class 1 entity in sequential and

parallelised modes has shown that, as expected, parallelised training requires much

shorter time than sequential training.

In particular, sequential training can take up to 250% more time than when training is

distributed among four networked workstations of the equal CPU power.
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conclusion

This chapter concludes the thesis by recapitulating on the requirements
which motivated this work and how they were met.

This thesis has addressed one of the fundamental requirements of feed forward neural

networks: the ability to expand in size and deal efficiently with high-dimensional data.

The novelty of this work lies in its development of a set of modular neural network

architectures, the ffnn entities, which are based on emergence and the principles of

connectionism while, at the same time, are characterised by the diversity in complexity,

level of abstraction and functionality of its constituent elements.

This chapter concludes the thesis by recapitulating on the requirements which moti-

vated this work and how they were met. It presents areas of future work which are

either related to, but outside the direct scope of, this thesis or are possible directions

for extending this research further.

7.1 Recapitulation

Central in our research is the development of a framework for replacing the tradition-

ally monolithic ffnn with an entity of small and flexible units. Unlike other attempts

to modularise neural networks, our methodology is not based on connecting neural

networks together under the central control of a higher authority which selects the best

network, neither is our primary aim to achieve better generalisation by task decompo-

sition or bootstrapping (see for example section 5.3 on page 54).

7.1.1 Motivations

The motivation to design and implement the modular architecture of the entities stems

161
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from the inability of single ffnn to scale up and, consequently, deal efficiently and

effectively with high-dimensional data without resorting to dimensionality reduction

techniques. Furthermore, although existing feed forward neural network models, be

they modular or monolithic, are relatively successful in addressing issues of generali-

sation, specialisation and confidence of prediction, the problems associated with high-

dimensional data and scaling remain basically unanswered. The thesis that the brain

is not only characterised by a massively connected network of neurons but also by the

existence of different computational systems operating at different levels of abstraction

and specialising at different functions, [Freeman, 1991], is by itself a right justification

to replace the single ffnn with the entities.

At a theoretical level, the approximation capabilities of the proposed entity classes

C1, C2 and C3 are equivalent to those of single ffnn as they, too, can approximate

arbitrarily well any real, continuous function. At a practical level, a comparison of the

generalisation ability and training consistency of the two models favours the entities.

This becomes clearer as the dimensionality of the training data increases.

7.1.2 FFNN entities: the model

The entities are characterised by:

• vast but controlled connectivity1 and at various levels, of relatively simple ele-

ments whose type is not restricted only to neurons,

• a number of localised processes each assigned only a small part of the input data

parameters,

• training procedures which are local at the level of single ffnn and, at the same

time, global, at the level of the whole entity.

What is more, the entities promote a framework of constructing complex connectionist

structures by interconnection of computing elements which differ in complexity but are

similar as far as structure is concerned. For example, neurons → single ffnn → entities

of single ffnn → · · · → entities of entities of . . .

A possible taxonomy of various entity designs based on two criteria: topology and

complexity of their training targets, has yielded the following three classes:

1 Vast connectivity characterises the neurons which make up the various single ffnn of the entity.

On the other hand, the connectivity between these single ffnn or other, less complex entities that

make up an entity can be controlled at the design stage.
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• C1 entities are constructed based on partial connectivity of which the only re-

quirement is that of feed forward signal propagation. Weights of variable strength

can be incorporated along the connections of the different elements of the entity.

The adjustment of these weights is effected by the use of a generalised version

of back-propagation, when all the localised training procedures – which also use

back-propagation – are completed.

• C2 entities are based on a cascaded architecture. This results in a more regular

structure which allows for better control as far as size and task allocation are

concerned.

• The topology of C3 entities is the same as that of C2. The difference is that the

training target of the units composing C3 entities is a measure of the discrepancy

between actual and desired outputs of the previous unit.

In effect, the difference between classes C1 and C2 is one between unordered and ordered,

unstructured and structured topology. Whereas, the difference between classes C2 &

C2 and C3 is one of more refined training targets. It is interesting to note that the idea

of refined training targets could not have been applied to C1 without imposing serious

constraints on its architecture. On the one hand, one risks losing the generality offered

by the C1’s unstructured topology and, probably, ending up with the same cascaded

architecture of C2 and C3, anyway. On the other hand, each unit of the C1 class may

have more than two inputs. This calls for a multi-dimensional error metric with all

the complications this implies. Thus, the design and implementation of a fourth entity

class was not attempted because it was considered to be time consuming and would

not add significantly to the novelty of this work.

7.1.3 Utility of the entities

The adoption of the entities as a means for the analysis of high-dimensional data not

only solves the important problems of scaling and deals effectively with the curse of

dimensionality but also yields a number of significant advantages over single ffnn.

Firstly, a coarse-grain parallelisation model is promoted which allows for better resource

allocation, more balanced mapping of processes to processors and, more importantly,

a huge reduction in the communication needs between the various processes. This

feature is not only important for the efficient parallelisation of the training process

of the entities, but also it is decisive for a feasible hardware implementation. In this

respect, the engineering problems associated with transferring an entity to silicon are
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eased considerably compared to those of single ffnn2.

Secondly, the size of an entity is determined by two factors: the size of each ffnn

unit and the total number of these units. Thus, the construction of an entity is more

flexible than that of a single ffnn. Consequently, the size of each ffnn unit is no

longer governed by the dimensionality of the training data. ffnn can, therefore, be

kept conveniently small so as to avoid the usual pathologies associated with large ffnn,

namely premature neuron saturation, complex error surface and numerous local minima.

Thirdly, the entities are a connectionist system where information is not only dis-

tributed and stored implicitly in the weights of each ffnn unit and in the weights

between the ffnn units, but also exists on a higher level, that of the ffnn (and all

the other higher level units composing the entity) which can identify, more readily,

meaningful information. Thus, the entities may be studied with an arbitrary level of

abstraction.

7.1.4 Theoretical results

The approximation capabilities of the three proposed entity classes are, theoretically,

equivalent to those of single ffnn as it was proved that they are universal function ap-

proximators and thus, can approximate arbitrarily well any real, continuous function.

The proof is contained in section 5.6 on page 72, and is based on the Stone-Weierstrass

theorem. This same theorem was used by [Hornik, 1991] and others in order to prove

that the class of feed forward neural networks of a single hidden layer containing an

arbitrary number of hidden units holds the property of universal function approxima-

tion.

In addition to this theoretical guarantee of the capabilities of the entities, a further

investigation of their performance at a practical level and comparison with single ffnn

was deemed necessary. These empirical results are summarised in the following section.

7.1.5 Experimental results

Two sets of experiments were carried out in order to assess the performance of the

entities in practice. In particular, VariDim compared the training time, sample error

2 An analogy from the field of micro-electronics is the following: currently the number of transistors

that can be accommodated to a single silicon chip for the purposes of building CPU is restricted by

technology and the laws of physics. One way to overcome this limitation is parallel computing where a

large number of CPU of average power are connected together. The efficiency of this parallel computing

device is a trade-off between communication needs and power of the constituent CPU.
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and approximation error of a set of single ffnn and entities as the number of training

data dimensions increased while the number of training vectors was kept constant.

ConsDim, on the other hand, compared the same quantities but on a set of single

ffnn and entities whose input dimensions and number of weights were kept fixed while

the number of training data vectors varied.

The results of these experiments systematically favour the entities which not only

exhibit a very consistent training with very few deviations from the mean but also,

their generalisation ability is much better compared to that of equivalent single ffnn

– sometimes as much as two or three-fold.

Moreover, the generalisation ability and training consistency of the entities improves

or, at worst, remains unchanged when the number of dimensions of the input data

increased. By contrast, according to our experiments, the performance of single ffnn

clearly deteriorates when the number of input dimensions exceeds 400 or 500. A detailed

analysis of these empirical results is contained in section 6.5.1 on page 156.

Chapters 4 and 5 contain ample proof that the training time of both the entities and

single ffnn is directly proportional to the number of weights they contain3. Thus, an

entity and a single ffnn with the same number of weights will take the same time to

train. However, we can not overlook the fact that training time is polynomial to the

number of input dimensions. In this respect, the analysis given in section 5.7 on page 74

shows, that provided that all single ffnn are constructed using the same parameters

(e.g. the ratio of the single layer units to the number of inputs) an entity will be trained

faster than a single ffnn by a factor which approaches asymptotically the quantity βγ

as the number of input data dimensions increases. β is the ratio of the number of

inputs per single ffnn unit in the entity (assumed constant) to the number of data

dimensions and γ is the ratio of the sum of the number of inputs of all available ffnn

units to the number of data dimensions.

In addition, there is a wide margin for improvement to the training time of the entities

due to the coarse-grain parallelism model they promote. In particular, a comparison of

training times between two identical C1 entities, one trained sequentially and the other

one distributed over three different processors, reveals that the sequential training time

is longer than the parallelised one by more than 250%.

3 For a fixed number of training iterations.



166 chapter vii

7.2 Future work

Directions for future research include, but are not restricted to, the following:

1. Improvement of the parallelisation methodology in terms of load balancing and

communication overheads by investigating alternative ways of partitioning the

training task and distributing it to the available processors. Also, investigation of

the relationship of various entity architectural parameters4 such as the number,

size and number of inputs of the single ffnn composing the entities, to the

efficiency of the parallelisation scheme.

2. Investigate how the entities model might effect rule extraction. The entities may

be studied with an arbitrary level of abstraction because they consist of units of

arbitrary type and complexity. Moreover, they promote a model where informa-

tion may be identified not only among the weights of the various units but also,

more readily, among the entity units themselves.

3. Extend the entities to support multiple outputs.

4. Create new entity classes and experiment with them.

5. Assess, at a theoretical level, the generalisation bounds of the entities. A possible

direction would be to establish bounds of the Vapnik-Chervonenkis dimension

(see appendix C on page 175) for the entities.

6. Extend the benchmarks by including more data sets and comparing the perfor-

mance of the entities with more learning machines – for example Support Vector

Machines.

4 See also 5.7 on page 74 for a reference to some of these parameters.
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appendix a

derivation of the back-propagation
algorithm

A.1 Introduction

The derivation of the back-propagation and weight update formulae is quite standard

and included in many neural network textbooks. For example in [Freeman, 1991].

Recall the notation introduced in section 3.2 on page 20 and that according to definition

3.5 and equation 3.6 on page 27, for a given input vector X, the corresponding FFNN

output response Y, and a target output response T, the discrepancy at the output is:

E =
1

2

u(L)∑
k=1

(Tk − Yk)
2

Recall also that for a given FFNN, a weight modification rule based on gradient descent

is the following:

W(t+ 1) = W(t)− β ∇E

where W(t) denotes the set of its free parameters at time t and β ∈ IR+.

In the next two sections we will calculate ∇E, a set of partial derivatives of E with

respect to each of the elements in W. A distinction will be made for derivatives with

respect to weights of the output layer and weights of the hidden layers.

A.2 Derivatives with respect to the output layer weights

We begin with the calculation of the partial derivative of E with respect to wL
kj , that

is the weight connecting the kth unit of the output layer, L, to the jth unit of the layer

L− 1:

∂E

∂wL
kj

= − 1

2
2 (Tk − Yk) · ∂Yk

∂wL
kj

= − (Tk − Yk) · ∂Yk
∂wL

kj

169



170 appendix a

Recall that Yk = yLk = σLk (A
L
k (y

L−1)) where, AL
k (·) and σLk are the affine transform and

activation function associated with the kth unit of the Lth layer. Then, by chain rule1,

∂Yk
∂wL

kj

=
∂σLk (A

L
k (y

L−1))

∂AL
k (y

L−1)
·
∂AL

k (y
L−1)

∂wL
kj

= σLk
′
(AL

k (y
L−1)) ·

∂AL
k (y

L−1)

∂wL
kj

Recall that:

AL
k =

u(L−1)∑
j=1

wL
kj y

L−1
j + bLk

therefore2,
∂AL

k

∂wL
kj

= yL−1
j and also

∂AL
k

∂bLk
= 1

The required derivative is then:

∂E

∂wL
kj

= −σLk
′
(AL

k (y
L−1)) · (Tk − Yk) · yL−1

j (A-1)

and the derivative with respect to the bias term of the output unit is:

∂E

∂bLk
= −σLk

′
(AL

k (y
L−1)) · (Tk − Yk) (A-2)

A.3 Derivatives with respect to the hidden layer weights

Let us now see what applies to units of the hidden layers. We will proceed in the same

way as above except that we need to find the partial derivatives of the mean squared

error with respect to the weights of the last hidden layer (L− 1), that is ∂E
∂wL−1

ji

:

∂E

∂wL−1
ji

= −
u(L)∑
k=1

(Tk − Yk) · ∂Yk

∂wL−1
ji

(A-3)

Recall that Yk = yLk = σLk (A
L
k (y

L−1)). Therefore, by chain rule,

∂Yk

∂wL−1
ji

=
∂σLk (A

L
k (y

L−1))

∂AL
k (y

L−1)
·
∂AL

k (y
L−1)

∂wL−1
ji

= σLk
′
(AL

k (y
L−1)) ·

∂AL
k (y

L−1)

∂wL−1
ji

(A-4)

1 Note that with σ′ we mean
dσ
dx .

2 wL
kj appears only once in the above sum and therefore the partial derivatives of all the other terms

with respect to wL
kj are zero and, thus, the sum is eliminated.
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Recall that:

AL
k (y

L−1) =

u(L−1)∑
j=1

wL
kj y

L−1
j + bLk

then by chain rule,

∂AL
k (y

L−1)

∂wL−1
ji

=
∂AL

k (y
L−1)

∂yL−1
j

·
∂yL−1

j

∂wL−1
ji

= wL
kj ·

∂yL−1
j

∂wL−1
ji

(A-5)

Similarly, recall that the output of the jth unit of the L− 1 layer is given by:

yL−1
j = σL−1

j (

u(L−2)∑
i=1

wL−1
ji yL−2

i + bL−1
j )

then,
∂yL−1

j

∂wL−1
ji

= σL−1
j

′
(yL−2

i ) · yL−2
i (A-6)

and the derivative of yL−1
j with respect to the bias term, bL−1

j , is:

∂yL−1
j

∂bL−1
j

= σL−1
j

′
(yL−2

i ) (A-7)

Substituting equations A-6 into A-5 and A-5 into A-4, we get

∂Yk

∂wL−1
ji

= σL−1
j

′
(yL−2

i ) · σLk
′
(yL−1

j ) · wL
kj · yL−2

i

Substituting the above equation into A-3 yields the final expressions for the error deriva-

tives:

∂E

∂wL−1
ji

= −yL−2
i · σL−1

j

′
(yL−2

i ) ·
u(L)∑
k=1

(Tk − Yk) · σLk
′
(yL−1

j ) · wL
kj

∂E

∂bL−1
j

= −σL−1
j

′
(yL−2

i ) ·
u(L)∑
k=1

(Tk − Yk) · σLk
′
(yL−1

j ) · wL
kj

A.4 Final back-propagation equations

Let us first introduce the term δ associated with the jth unit of the lth layer as follows:

δlj =

(Tj − Yj) · σlj
′
(Al

j(y
l−1)) if l is the output layer, L,

σlj
′
(Al

j(y
l−1)) ·

∑u(l+1)
k=1 δl+1

k wl+1
kj if l is hidden layer, 1 < l < L.

(A-8)
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This simplifies the partial derivative expressions to:

∂E

∂wl
ji

= − δlj y
l−1
i and

∂E

∂blj
= − δlj

Finally, the update expression for the weight connecting the jth unit of the lth layer

with the ith unit of the previous layer is given by:

wl
ji(t+ 1) = wl

ji(t) + β δlj y
l−1
i (A-9)

the update expression for the bias term3 of the jth unit of the lth layer is given by:

blj(t+ 1) = blj(t) + β δlj (A-10)

and δlj is given by equation A-8.

3 In general, the bias term can be treated as a weight with a unit input. This is why the derivative

expressions with respect to the bias are the same as those with respect to the weights except for the

term yl−1
i which, in the case of the bias, is always 1.
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the xor problem and the perceptron

The exclusive-OR or xor problem is one of the most classical cases indicating the

inability of the perceptron to classify linearly inseparable patterns.

The training patterns are taken from the truth table of the xor boolean function shown

in table B.1(a). Figure B.1(a) indicates that it is impossible to separate the two classes

(0 and 1) by any surface or line. This implies that a perceptron will never be successful

in the xor task.

A B A
⊕

B

0 0 0

0 1 1

1 0 1

1 1 0

(a)

A B C A
⊕

B

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

(b)

Table B.1: Two-variable and two-variable-plus-dummy xor truth tables

��
��
��
��

����

��

��

A1
0

1

B

0

(a)

��
��
��
��

����

��

��

A1
0

1

C

B

0

1

(b)

Figure B.1: A geometric representation of a two-variable and two-variable-plus-dummy

xor truth table. The gray surface indicates one possible decision surface implemented

by a perceptron

However, if a dummy variable (C) is strategically added to the xor truth table, as
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shown in table B.1(b), the input patterns (A, B and C) become linearly separable and

there exists a surface to separate them into the two classes (the gray plane in figure

B.1(b)). This result is also predicted by equation 4.1 on page 36 which expresses the

number of linearly separable patterns in terms of the number of input dimensions and

number of training examples.

Table B.1(a) represents the case where there are 4, two-dimensional training exam-

ples. Thus, the number of linearly separable patterns1 is:

2∑
i=0

(
4− 1

i

)
=

(
3

0

)
+

(
3

1

)
+

(
3

2

)
= 7

(where
(
α
β

)
denotes the number of combinations of taking β items from a pool containing

a total of α items and is equal to α!
β!(α−β)!)

We can see that out of 8 possible dichotomies of 4, two-dimensional vectors only 7 of

them are linearly separable. There is a pair which is not linearly separable and this is

contained in the xor truth table.

On the other hand, table B.1(b) represents the case where there are 4, three-

dimensional training examples (with the addition of the dummy variable, C). The

number of linearly separable patterns now becomes:

3∑
i=0

(
4− 1

i

)
=

(
3

0

)
+

(
3

1

)
+

(
3

2

)
+

(
3

3

)
= 8

Therefore, in this case, all the possible dichotomies are linearly separable.

Note that the above formula requires that all points be in general positions. This

requires that there is no subset of 3 (the number of dimensions) or fewer points which

are linearly dependent. Thus, the results above will not be valid when the C column of

table B.1(b) is filled with only 1’s or only 0’s (that would have made the points linearly

dependent).

Whether this trick will aid the perceptron to eventually overcome its linearity handicap

is beyond doubt, but one may justifiably ask how practical and systematic it is.

1 The total number of dichotomies, linearly separable or not, is 2(4−1) = 23 = 8. This should not

be confused with the total number of labellings which is 2N = 24 = 16.
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theoretical frameworks for learning

C.1 Introduction

The generalisation ability of learning machines is a concept which is very difficult

to be described and quantified in a theoretical framework. This section is devoted to

describing the idea of Probably Approximately Correct (pac) learning – a widely accept-

able theoretical model of learning due to Valiant, [Valiant, 1994] – and the attempt by

Vapnik and Chervonenkis to quantify the generalisation ability of (binary) classifiers.

C.2 Formulation of the learning problem

Let us now proceed in formally defining the setup for learning a sequence of labelled

examples and formulating the learning problem.

A learning machine, L, of which the family of neural networks with binary output

is just a small subset, is capable of implementing a family of functions, called its

hypothesis space:

Gm = {g : IRm 7→ {0, 1}}

by changing the connectivity of its internal components and adjusting the value of its

adaptive parameters.

The information presented to L during training consists only of a set of N labelled

examples in the form of (x, y) pairs. These N pairs for which the input vectors, xi,

have been generated by some unknown probability distribution P (x) on an example

space X , and the corresponding labels, yi, are given by an, also unknown, function

h(x), are called a training sample of length N :

T = ((x1, y1), (x2, y2), . . .@!, (xN , yN ))

The set T is only a subset of the concept space T which consists of all possible input

vectors and their respective labels as assigned by h.

Learning is the process by which L selects a hypothesis, g, from its hypothesis space,

Gm. It is hoped that the selected hypothesis, g, will assign each input vector, xi, to
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its correct label, yi (as determined by h(xi)). The selection of a particular g may be

done according to many different criteria but it only depends on the training sample T

(since nothing else is known).

Let us define the sample error of the selected hypothesis g on the training set, T, to be

the number of disagreements of the hypothesis with the true label of each input vector

in T normalised over the number of samples, N :

ÊT(g) =
1

N
|{g(xi) ̸= yi}Ni=1| (C-1)

The sample error, however, is of limited importance as there are no guarantees that it

is related to the performance of L in classifying unknown input vectors generated with

the same probability, P (x), as the ones in the training sample. Persons with experience

in training neural networks can confirm this fact (over-fitting is a classical example).

The need for a more pragmatic measure of the performance of L leads to the definition

of another error measure defined over the whole concept space T as:

E(g) = P ({(x, y) ∈ T : g(x) ̸= y}) (C-2)

Equations C-1 and C-2 defined above are similar, in principle, to the classical split

in probability theory between the notions of observed frequency of occurrence of an

event and the probability of that event occurring. Like frequency and probability, the

observed and pragmatic error, above, will only be identical when the sample length,

N , becomes (impractically) large (according to the law of “large numbers”).

Finally, one more error function is introduced. This is termed as approximation error

and refers to the pragmatic error (as defined in equation C-2) of the best hypothesis

in the hypothesis space Gm:

Eapr(Gm) = min
g ∈ Gm

E(g) (C-3)

Eapr(Gm) has – at least directly – nothing to do with the ability of the learning machine

to find a good hypothesis based on the training sample. Instead, it tells us about

whether L (and consequently Gm) contains a potentially good hypothesis and how

good this is.

C.3 Probably Approximately Correct Learning

pac learning talks about the probability that the discrepancy between the approxima-
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tion and pragmatic error indicators for a learning machine, L, is below a given accuracy

level.

Formally, the pac framework is defined as following:

Definition C.1 Given a learning machine L associated with a hypothesis space, Gm,

and a concept space T from which a training sample, T, of length N is selected, and for

arbitrary ϵ, δ ∈ (0, 1), we say that Gm is learnable and that N is a sufficient sample

size for (ϵ−δ)-learning if the probability that the discrepancy between the approximation

and pragmatic error indicators is less than ϵ, is at most δ:

P (|Eapr(Gm)− E(g)| < ϵ) < δ (C-4)

C.4 The Vapnik-Chervonenkis dimension

The VC dimension gives worst-case bounds on the generalisation ability of a learning

machine. Thus, the predicted results are extremely pessimistic and are rarely confirmed

in practice.

Never-the-less, the perspective of Vapnik and Chervonenkis gives a theoretical di-

rection to the study of learning and allows us an insight into the generalisation abilities

and limitations of neural networks. It also unifies previous efforts to quantify these

limitations, for example the ideas behind such notions as the order of a predicate,

[Minsky and Papert, 1969], and linear separability (see section 4.2.2 on page 35).

Firstly, we need a few definitions:

Definition C.2 Let the number of possible (binary) classifications of N input vectors

(drawn from the example space X ) X = (x1,x2, . . .@!,xN ) by a learning machine L
implementing the hypothesis space Gm be indicated by ΠGm(X). For a binary classifier,

ΠGm(X) ≤ 2N .

Definition C.3 We say that a sample X of length N is shattered by the hypothesis

space Gm or that Gm shatters X if ΠGm(X) = 2N .

Definition C.4 The growth function associated with a sample of length N and a

hypothesis space Gm is the maximum possible number of classifications by Gm and is

defined as:

∆(N) = max
X ∈ X

ΠGm(X) (C-5)
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The growth function is a special property of a learning machine associated with a

hypothesis space Gm defined on an example space X . However, it has been shown by

[Cover, 1965] and also by [Vapnik and Chervonenkis, 1971] that the general form of

this function either grows as 2N or is bounded above by the relation:

∆(N) ≤ NdV C(Gm) + 1 (C-6)

In particular, the growth function for small N is equal to 2N . However, at a critical

sample length called the VC dimension, N = dV C(Gm), of the particular learning

machine, the growth function grows only polynomially and is bounded by equation C-6

above.

Formally the VC dimension is defined as following:

Definition C.5 The VC dimension of a hypothesis space Gm is the maximum length

of a sample, X shattered by Gm and is given by:

dV C(Gm) = max {N : ∆(N) = 2N} (C-7)

where we take the maximum to be infinite if the set is unbounded.

The main contribution of Vapnik and Chervonenkis to the study of learning is the

following theorem:

Theorem C.1 For any hypothesis space Gm, the condition that Gm has finite VC di-

mension is both necessary and sufficient for potential learnability. Thus potentially

learnable hypothesis spaces are those of finite VC dimension.

C.5 Some generalisation bounds

A first result is a theorem from [Vapnik and Chervonenkis, 1971] which gives an upper

bound on the probability of the discrepancy between the sample and pragmatic error

indicators (see equations C-1 and C-2). Given ϵ ∈ (0, 1) and a sample T, the following

holds:

P ( max
g ∈ Gm

|ÊT(g)− E(g)| > ϵ) ≤ 4∆(2N)e−
ϵ2N
8 (C-8)

The above equation gives an upper bound on the difference between our estimated

error (e.g. the sample error indicator, ÊT(g)) and the true generalisation performance

indicated by E(g). In order to make this difference as small as possible, for a given

accuracy ϵ, we need to make the right hand side of the equation small by increasing
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N if and only if we are sure that the growth function is in the polynomial growth

region (e.g. it grows at most as NdV C(Gm) + 1 and not as 2N . If ∆(2N) grows as 2N ,

increasing N will increase the right hand side of the expression (since the base of the

natural logarithms, e, is less than 2).

In [Baum and Haussler, 1989] multi-layer, feed-forward neural networks with threshold

activation functions are considered. An upper bound of the VC dimension of such a

network comprising of |W| weights and M neurons, is given by:

dV C ≤ 2|W |log2(eM) (C-9)

where e is the base of natural logarithms.

Furthermore, they showed that if a sample size given by:

N ≤ |W |
ϵ

log2(
M

ϵ
) (C-10)

can be learned by the network with an accuracy of 1 − ϵ/2 (where 0 < ϵ ≤ 1/8),

then there is a high probability that the network will classify unknown inputs with an

accuracy of at least 1− ϵ.

Finally, for a large two-layer network, they derived the approximate rule of thumb that

the minimum sample length to guarantee correct classification of 1− ϵ unknown inputs

must be N ≈ |W |/ϵ. For example, if an accuracy of 90% is required, then the number

of training examples must be approximately equal to ten times the number of weights!

C.6 Support Vector Machines

C.6.1 Introduction

The Support Vector (sv) algorithm is a non-linear generalisation of the Generalised

Portrait algorithm developed in the Soviet Union in the sixties, [Vapnik and Lerner, 1963]

and [Vapnik and Chervonenkis, 1964]. As expected, the SV algorithm is grounded

in the framework of statistical learning theory which has been developed by Vapnik,

Chervonenkis and others over the last thirty years, [Vapnik and Chervonenkis, 1974],

[Vapnik, 1979], [Vapnik, 1995], etc.

The present form of the sv algorithm was developed at at&t Bell Labs by Vapnik and

colleagues, [V.N. Vapnik and Smola, 1997], and is commonly referred to by the term

Support Vector Machines (svm).
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C.6.2 SVM basics

svm is a new way of training polynomial, neural network and Radial Basis function

learning machines for either classification or regression tasks1. The novelty of svm lies

in the fact that training is not based on minimising the sample or empirical error (see

equation C-1), like so many neural network training algorithms do and are usually faced

with one of the many guises of the same problem, namely the bias-variance trade-off or

over-fitting, [Geman and Bienenstock, 1992]. Instead, svm attempts to minimise the

upper bound of the generalisation error.

Another difference between svm and more conventional optimisation methods is that

svm choose the most suitable function space for the task out of a pool of function

spaces. Most optimisation methods attempt to minimise the sample error for some

fixed function space.

svm use a different induction principle to minimise the upper bound of the generalisation

error with the aid of Structural Risk Minimisation (srm). srm’s goal is to choose among

various learning machines with different learning capacities the one which yields a good

trade-off between low empirical risk and small capacity. In order to achieve this, one sets

up a hierarchy of function spaces and chooses the space with the smallest complexity

that can attain the desired sample error.

svm and srm are based on the existence of the family of bounds governing the relation

between capacity of a learning machine and its performance – the result of Vapnik’s

previous work on statistical learning theory and the VC dimension, [Vapnik, 1979].

In practice, training the svm consists of minimising a cost function with a number

of constraints. Problems such as training the svm fall into the category of standard

constrained Quadratic Programming (qp) and appear to be simple and straightforward.

However, it is well known that finite numerical precision can cause qp solvers to give

non-optimum solutions, [Burges, 1998]. Also, the complexity of the qp solver is highly

dependent on the training data, its size and its dimensions. Unfortunately, there is no

known method to define the data complexity analytically.

1 E.g. with binary/discrete or continuous outputs.
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ffnn, the stone-weierstrass
theorem and the universal function
approximation property

D.1 Introduction

The Stone-Weierstrass theorem has been used by many theoreticians in the field of

neural networks to prove that the family of FFNN can approximate arbitrarily well

any real continuous function over a compact set (see for example [Hornik, 1991] and

[Hornik et al., 1992]).

In this section, we present a proof along the same lines. The definitions of Chapter

3 regarding the family of sigmoids (definition 3.1 on page 22) and the family of affine

functions (definition 3.2 on page 22) will be used. For the sake of clarity, the definition

of the family of all FFNN functions (see definition 3.2 on page 24) will be re-written as

a single output, a single hidden layer of q units, a single linear output with zero bias,

neural network:

Gn = {gn : IRn 7→ IR|gn(x) =
q∑

i=1

βiσ(Ai(x)), βi ∈ IR,x ∈ IRn, Ai ∈ An, σ ∈ S} (D-1)

D.2 Metric spaces

In the following definition the notions of a metric and a metric space are introduced

(see [Rudin, 1964] and [Hornik et al., 1992]):

Definition D.6 A metric on a set X is a function ρ : X×X 7→ IR which satisfies the

following three conditions:

1. Positivity: ρ(x, y) > 0 unless x = y in which case ρ(x, y) = 0

2. Symmetry: ρ(x, y) = ρ(y, x)

3. Triangle inequality: ρ(x, y) ≤ ρ(x, z) + ρ(z, y)

where x, y, z ∈ X. A set X, equipped with a metric, ρ(·, ·) is called a metric space,

denoted by (X, ρ).
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Here, we are introducing the terms ρ-dense and uniform convergence

Definition D.7 A subset M of a metric space (X, ρ) is ρ-dense in a subset T if for

every ε > 0 and for every τ ∈ T, there is a µ ∈ M such that ρ(µ, τ) < ε.

Example D.1 Let Fn be the set of bounded functions from IRn 7→ IR and f, g ∈ Fn.

Then,

ρ(f, g) ≡ supx∈IRn |f(x)− g(x)|

is a metric on Fn.

The closeness of a class or family of functions to another class is described by the

concept of denseness:

Definition D.8 S ⊆ Fn is uniformly dense on compacta if for all compact sets K,

S is ρK-dense in Fn where ρK(f, g) = supx∈K|f(x)− g(x)|.

D.3 The Stone-Weierstrass theorem

Below are some definitions which will be used in the Stone-Weierstrass theorem fol-

lowing.

Definition D.9 A family F of real functions defined on a set E is an algebra, if F is

closed under:

1. addition: x+ y ∈ F

2. multiplication: x · y ∈ F

3. scalar multiplication: α · x ∈ F

for x, y ∈ F and α scalar.

Definition D.10 A family of functions F separates points on a set E if for every

x1, x2 ∈ E and x1 ̸= x2, there exists a function f ∈ F such that f(x1) ̸= f(x2).

The above statement implies that there is at least one function in F that “knows” the

difference between any two points of E and, thus, “treats” (maps) them differently.

Definition D.11 A family of functions F vanishes at no point of E if for each x ∈ E

there exists a function f ∈ F such that f(x) ̸= 0.
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The Stone-Weierstrass theorem may be used in determining whether a family of func-

tions over a (compact) set K can approximate arbitrarily well any continuous function.

It is, therefore, the key tool in proving that a certain neural network architecture (im-

plementing a certain family of transfer functions) is a universal function approximator.

Theorem D.2 Let F be an algebra of real continuous functions on a compact set K. If

F separates points on K and if F vanishes at no point on K, then the uniform closure

B of F consists of all real continuous functions on K (i.e. F is ρK-dense in the space

of real continuous functions on K).

D.4 FFNN are Universal Function Approximators

Theorem D.3 Any feed-forward neural network implementing the family of functions

Gn (see equation D-1) and whose inputs belong to a compact set K ⊂ IRn, is uniformly

dense on compacta in the set of all continuous functions in IRn (mapping IRn to IR).

Proof

• Gn is an algebra of functions because it satisfies the three conditions set in defi-

nition D.9, namely:

1. addition: The sum gn(x) + hn(x) for gn, hn ∈ Gn, x ∈ K and |K| = n,

belongs to Gn since:

q∑
i=1

βiσ(Ai(x)) +

q
′∑

j=1

β
′
jσ(A

′
j(x)) =

q+q
′∑

k=1

β
′′
kσ(A

′′
k(x))

where β
′′
k =

βk, for 1 ≤ k ≤ q

βq+q
′−k, for q < k ≤ q + q

′

and A
′′
k(x) =

Ak(x), for 1 ≤ k ≤ q

A
′

q+q
′−k

(x), for q < k ≤ q + q
′

2. multiplication: The product gn(x) · hn(x) for gn, hn ∈ Gn, and x ∈ K,

belongs to Gn since:

q∑
i=1

βiσ(Ai(x)) ·
q
′∑

j=1

β
′
jσ(A

′
j(x)) =

q×q
′∑

i,j

βiβ
′
jσ(Ai(x))σ(A

′
j(x))
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The condition will be satisfied if the product of the two sigmoids is still the

same sigmoid. [Hornik et al., 1992] solve this problem by using the “cosine

squasher”, [Gallant and White, 1992]:

σcos(x) =


0 for −∞ < x ≤ −π

2

cos(x+ 3π
2
)+1

2 for − π
2 < x ≤ π

2

1 for π
2 < x <∞

(D-2)

3. scalar multiplication: The product αgn(x), for gn ∈ Gn, and α scalar, be-

longs to Gn since:

α

q∑
i=1

βiσ(Ai(x)) =

q∑
i=1

β
′
iσ(Ai(x))

• Gn separates points on K, e.g. if x1,x2 ∈ K and x1 ̸= x2 then there exists at least

one gn ∈ Gn such that gn(x1) ̸= gn(x2). This is true when σ(A(x1)) ̸= σ(A(x2))

e.g. when A(x1) ̸= A(x2) (due to monotonicity of σ). To ensure A(x1) ̸= A(x2),

choose A ∈ An so that for λ1, λ2 ∈ IR, λ1 ̸= λ2, we have A(x1) = λ1 and

A(x2) = λ2. This will ensure that Gn separates points on K.

• Gn vanishes at no point of K, e.g. for each x ∈ K there exists at least one

gn ∈ Gn such that gn(x) ̸= 0. To see this, choose λ ∈ IR such that σ(λ) ̸= 0.

Then construct A ∈ An such that A(x) = λ. This is possible even if x = ∅
because of the presence of the constant term b in the affine functions equation.

This ensures that Gn vanishes at no point of K.
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testing for statistical significance

E.1 Introduction

In the comparison and interpretation of various experimental results, it must be re-

membered that these are mere samples drawn from a much bigger population, by the

experimental procedure. The degree in which the observations reflect the actual popu-

lation’s properties (e.g. mean and variance) have to be estimated and the conclusions

be corrected approximately. This procedure is particularly important when we have

only a small number of samples available – e.g. when the experiments were repeated

for 40, 50 or less times.

In such cases, a test for the statistical significance of the experimental results (the

samples) is required in order to see how safe it is to generalise upon the whole pop-

ulation. A framework for testing for statistical significance of experimental results is

provided by the Small Sampling Theory, [Spiegel, 1971] and [Brookes and Dick, 1963].

This framework is as follows:

1. Construct the null hypothesis related to the objectives of the experiments. For

example, one of the objectives of the experiments described in chapter 6 was to

compare the generalisation ability of entity networks and single FFNN. In this

case, the null hypothesis can be “for any number of inputs, the mean approxi-

mation error of the entity does not differ significantly from that of the equivalent

single ffnn”. Another objective of the experiments was to compare the training

inconsistency – e.g. the variation in the sample error – of the networks. An

appropriate null hypothesis can be “for any number of inputs, the variance of

the approximation error of the entity does not differ significantly from that of the

equivalent single ffnn”.

2. Construct the alternative hypothesis which will be adopted in the case of the

null hypothesis being rejected. There are situations where it is enough to have

an alternative hypothesis which simply states that there are significant differences

between the means or variances of the two populations. For example, “for any

number of inputs, the mean approximation error of the entity differs significantly

185
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from that of the equivalent single ffnn”. In this case we will use a two-tailed test.

On the other hand, if it is desirable to identify the direction of the difference in

the examined quantities, we will have to use a one-tailed test. In this case the

alternative hypothesis can be: “for any number of inputs, the mean approximation

error of the entity is lower than that of the equivalent single ffnn”.

3. Choose the level of significance. The level of significance is defined as the prob-

ability of making a Type I error: that is, reject the null hypothesis when it should

have been accepted. It usually is safe to assume a significance level of 5 % or less,

[Brookes and Dick, 1963].

4. Choose a statistical significance test. There exist a large number of such tests

(for example the t-test, the F-test, the χ2-test, etc.) each appropriate for a cer-

tain type of experimental results, number of samples, objectives and selected

hypotheses.

5. Estimate the statistic. This is calculated using the sample data’s mean, standard

deviation, number of samples and the appropriate formulae specific to the type

of each test.

6. Accept or reject the null hypothesis depending on whether the statistic calcu-

lated earlier is lower or higher than the respective entry (i.e. critical value) in

the statistical table containing the distribution associated with the chosen signif-

icance test and the degrees of freedom. The latter is a function of the number of

observations.

E.2 Testing the difference between two populations’ means: the t-test

Two samples of n1 and n2 observations with meansm1 andm2 and standard deviations

s1 and s2 are drawn independently from two populations with means µ1 and µ2 and

standard deviations σ1 and σ2. In general, the populations’ properties are unknown

while the samples’ properties are known.

In order to test the difference between the population means, proceed as follows:

1. Calculate the t-statistic which is the ratio of the difference of the samples’ means

over a normalised expression of their standard deviations. The exact formula is

given below:

t =
m1 −m2√
s21
n1 +

s22
n2

(E-1)
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2. Calculate the degrees of freedom, ν, of the observations using the following for-

mula:

ν =


n1 + n2 − 2 if n1 = n2

(s21/n1+s22/n2)2

(s21/n1)2

n1−1
+

(s22/n2)2

n2−1

if n1 ̸= n2
(E-2)

3. Consult a t-distribution table (available in most statistics textbooks, see for ex-

ample [Spiegel, 1971, p.344]) and find the critical value, ta,ν , corresponding to the

observations’ degrees of freedom, ν, and the chosen level of significance, a.

4. Depending whether a one-tailed or a two-tailed test is required, the null hypothesis

is rejected at the chosen significance level and, thus, the alternative hypothesis

is accepted, if:

• one-tailed test : t > ta,ν

• two-tailed test : |t| > ta/2,ν

E.3 Testing the ratio of two populations’ variances: the F-test

Two samples of n1 and n2 observations with means m1 and m2 and standard devia-

tions s1 and s2 are drawn from two populations with means µ1 and µ2 and standard

deviations σ1 and σ2.

In order to find out whether the difference between the variances of the two samples

is significant, proceed as follows:

1. Calculate the F-statistic which is the ratio of the variances of the two samples.

The exact formula is given below:

f =
s21
s22

(E-3)

2. The degrees of freedom associated with the statistic mentioned above are calcu-

lated as follows:

for the numerator, ν1 = n1 − 1

for the denominator, ν2 = n2 − 1

3. Consult a F-distribution table (available in most statistics textbooks, see for

example [Hinton, 1995, p.308]) and find the critical value, fa,ν1,ν2 , corresponding

to the degrees of freedom ν1 and ν2 and the chosen level of significance, a.
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4. Depending whether a one-tailed or a two-tailed test is required, the null hypothesis

is accepted with the chosen significance level, if:

• one-tailed test : f < fa,ν1,ν2

• two-tailed test : f < fa/2,ν1,ν2

Following is an example of using the t-test and F-test to assess the statistical significance

of the results obtained in chapter 6:

Example E.2 A single ffnn and a C1 entity with the same number of inputs (700)

were trained with the same data for 40 and 50 times respectively. The approximation

error of each network was recorded each time. In the end, the mean approximation error

(over the 40 training attempts) of the single ffnn was m1 = 0.1185 and its standard

deviation s1 = 0.042. For the entity, the mean was m2 = 0.0968 and the standard

deviation was s2 = 0.0115. In view of the fact that the sample means and standard

deviations differ does not necessarily imply that the population means and standard

deviations will differ significantly, establish the following:

1. Can we conclude that the single ffnn is a worst generaliser (e.g. higher

approximation error) than the entity at a 5 % significance level?

2. Can we conclude that the single ffnn’s variation of the approximation error

is greater than that of the entity at a 5 % significance level?

Solution: Let µ1, µ2, σ1 and σ2 denote population mean and standard deviation of the

approximation errors for the single ffnn and the entity respectively.

1. We have to decide between the hypotheses:

• null hypothesis, H0 : µ1 = µ2, the means do not differ significantly – the two

networks have the same generalisation ability,

• alternatively, H1 : µ1 > µ2, the single ffnn has a higher mean approxima-

tion error than the entity and, consequently, is a worse generaliser.

We will use the one-tailed t-test because our hypotheses are concerned with the

difference and the direction of the difference between the two populations’ means.

The t-statistic is calculated as:

t =
0.1185− 0.0968√

0.0422

40 + 0.01152

50

= 3.17
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On the basis of a one-tailed test at a 5 % level of significance and with

ν =
(0.0422/40+ 0.01152/50)2

(0.0422/40)2

39 + (0.01152/50)2

49

≈ 43

degrees of freedom, the t-distribution table entry indicates a critical value1 of

t5%,40 = 1.684. Because t > t5%,40 (e.g. 3.17 > 2.684), we have to reject the null

hypothesis and accept H1 – the entity is a better generaliser than the single ffnn.

2. We have to decide between the hypotheses:

• null hypothesis, H0 : σ
2
1 = σ22, the variances do not differ significantly,

• alternatively, H1 : σ21 > σ22, the single ffnn’s approximation error has a

higher variance than the entity’s.

Because we want to check hypotheses regarding the variances of the populations

we will use the F-test (again, the one-tailed variation because we are interested

in the direction of this difference). The F-statistic is calculated as:

f =
0.0422

0.01152
= 13.34

On the basis of a one-tailed test at a 5 % level of significance and with ν1 =

40 − 1 = 39 and ν2 = 50 − 1 = 49 degrees of freedom for the single ffnn and

entity observations respectively, the F-distribution table entry indicates a critical

value of f5%,39,49 → f5%,30,40 = 1.174. Because f > f5%,30,40 (e.g. 13.34 > 1.174),

we have to reject the null hypothesis and accept H1 – the entity’s approximation

error has a lower variance.

1 Note that common t-distribution tables might not contain the critical value for the calculated

degrees of freedom. For example, the table might contain entries for 40 and 50 degrees of freedom, but

not for the required 43. In this case we may use linear interpolation between the two available entries

in order to obtain the critical value for the 43 degrees of freedom. Alternatively, use the next lowest

value available (e.g. 40).
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appendix f

the np script language and
interpreter

F.1 Overview of the npnp interpreter

F.1.1 Introduction

npnp is an interpreter of the npnp script language, a set of simple commands which allow

a user to create, train and test single feed-forward neural networks (ffnn), as well as

entities of ffnn.

train data = ProduceVectoredDataSet {
NumInputs = 100;
NumOutputs = 1;
NumLines = 60;
Y = Levy6;

}
entity = CreateEntity {

NumInputs = 100;
EntityType = FFNN;
EntityClass = 1;
MinNumInputs = 10;
MaxNumInputs = 20;
ConfFile = EntityConfig;
Seed = 1974;

}
TrainEntity {

Obj = entity;
InpFileObj = train data;
Iters = 1000;

}
single = CreateSingle {

Arch = 100 140 20 1;
SingleType = FFNN;
Weights = single;

}
TrainSingle {

Obj = single;
Iters = 2000;
InpFileObj = train data;

}
$

A sample npnp script used to train a single ffnn and

an entity with 100 inputs and a single output.

npnp scripts are composed of the following five elements:

1. Instruction Identifier: This is simply the name of an instruction. An instruction

(e.g CreateSingle) will:
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(a) initiate an action according to the parameters specified (e.g. TrainEntity),

or,

(b) create an object which will hold some or all of the parameters specified (e.g

CreateSingle), or,

(c) do both 1(a) and 1(b) (e.g. ProduceVectoredDataSet).

2. Object Identifier: When an instruction does either 1(b) or 1(c), an object is

created and referenced by an identifier (e.g train data). There are three classes

of objects:

(a) File Object: An object which has been created by an OpenFileObject, or

equivalent1, command. A File object represents either a local file or data

which will be/has been received from the network. See appendix F.7 for

more details.

(b) Single Object: This object represents a single unit (be it a ffnn or an

adaline etc.) and holds data relevant to it. For example, it holds the

architecture of the network.

(c) Entity Object: This object represents an entity of single units (again ffnn

or adaline etc.).

3. Parameter Identifier: Certain instructions require certain parameters to be set.

The parameter identifiers refer to these. For example, the parameter Arch refers

to the architecture of the unit to be created with the CreateSingle instruction).

4. Parameter Values: The value that a parameter takes. It is the text between the

symbols ‘=’ and ’;’. For example 100 140 20 1 in the architecture parameter.

5. Separators (#{} =; $): These are symbols which separate different instructions,

objects, parameters and values.

$ is the program terminator symbol. Whatever there is after that symbol is

ignored.

# is the comment symbol. Whatever there is between this and the end-of-line

symbols is ignored.

{} are the start and end-of-block symbols. A block always (even if empty)

follows an instruction and within it all the relevant parameters should be

specified.

1 For example the MergeObjects instruction returns a file object.
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= is the assignment symbol.

; denotes the end of the parameter value.

, is used as a separator of a list of objects.

.. is used to indicate a range in a list. For example 1..3 is expanded to 1, 2, 3.

F.1.2 Parallel execution

A useful feature of npnp is the parallel execution of lengthy training processes. It is only

applicable to those entity architectures for which decomposition of the training process

into independent sub-tasks is possible. So far, such a decomposition has meaning only

with the first and second ffnn entity classes.

npnp will proceed to parallel training if the Hosts field of the TrainEntity contains a

list of remote machines for which unix’s rsh and rcp (remote shell and remote copy)

are enabled for that particular user. The local host will divide the process of training

into as many sub-tasks as the number of hosts in the Hosts field, distribute it to the

specified remote hosts and suspend the interpetation of the script. When all hosts have

completed their tasks, the results are sent back to the local host which resumes the

interpretation of the script.

F.1.3 Running npnp

Usage:

npnp [-log logfile] [-(no)bell] [-syntax] [-template] [-h] [-silent] [-instruction ins] file

Invoking npnp is very easy. Given an npnp script file, let us call it myscript.np, do:

% npnp myscript.np ¬

npnp will first parse the file and then process each instruction. Messages about the

current instruction being processed are sent to the stdout. You can send most of them

to a log file by specifying the ‘-log mylogfile’ option before the input script name, i.e.:

% npnp -log mylogfile myscript.np ¬

By default, a bell will sound whenever an error occurs. You can avoid this by specifying

the ‘-nobell’ option.

The command line option ‘-syntax’, (always before the input file), tells npnp that it

need not process the input file but rather to check whether it is syntactically correct.
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Another option is ‘-template’. This option tells npnp to treat the input file as a template

file. A template file is an npnp file for which some of its parameters are set to the state-

ment ASK(question). For each of these statements and unless it has been encountered

before, npnp will ask you the question and will substitute the whole ASK statement with

your answer. The final npnp file with all the ASK statements substituted is printed on

the stdout.

Finally, the options ‘-help’, ‘-h’ and ‘-usage will cause npnp (irrespective of any other

specified options) to print a short usage message and exit. The option ’-instruction’

followed by the name of an instruction will print a short description about it and all the

parameters which it requires. Use the keyword ’all ’ in order to print all the instructions

in the npnp system.

F.2 npnp instructions: general object interaction

F.2.1 ExtractColumnsFromObject

A number of file objects, in which data is arranged in columns, can be used, in con-

junction with this command, in order to extract some of their columns and form a new

file object.

An example situation is the following: We have two training files composed of 5 columns

each (3 input columns and 2 output columns). We need to construct a third data

file which will train a network with 6 inputs and 2 outputs, say, X1, X2, X3, X4, X5,

X6 and Y2, Y3. The instruction ExtractColumnsFromObject takes a sequence of:

FileObjectName[Lists]

separated by colons and appends them side by side to the output file. For example, in

our situation, we will give the following Columns specification:

Columns = Obj1[1 TO 3]:Obj2[1 TO 3]:Obj1[4]:Obj2[5]

identifier = ExtractColumnsFromObjects {
DefaultFileObj

Optional

=

{
The file object from some or all of the Column items in the

Columns description may be omitted if this parameter is defined.

}
OutFileName

Optional

=


The name of the local file or channel where the result should

be sent to. If omitted, the file name will be constructed as

temp Identifier. See appendix F.7 for channel categories.
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Columns

Required

=



A colon separated collection of Columns. A Column (see defini-

tion below) consists of Lists (see definition below and in appendix

F.8) enclosed in square brackets and, optionally, preceded by

the identifier of an existing file object. If no file object is men-

tioned for a given Column then the DefaultFileObj (see below)

will be used. A Column is formally defined as:

Column = [Lists] | FileObject[Lists]

Columns = Column | Columns:Column

See appendix F.8 for more information about Lists.


}

F.2.2 MergeObjects

Merging can be done either as a simple concatenation (sequential) of the file objects

or in a side-by-side (parallel) fashion.

identifier = MergeObjects {

InpFileObj

Required

=


This must be a comma separated list of at least two file objects.

The order of merging is the same as the order of the file objects

in this field.


MergeMethod

Optional

=


It could either be Parallel where the contents of the file objects

are all put side-by-side, or Sequential where the operation is a

simple concatenation of the specified file objects.


OutFileName

Optional

=


The name of the local file or channel where the result should

be sent to. If omitted, the file name will be constructed as

temp Identifier. See appendix F.7 for channel categories.


}

The following example merges 3 files in parallel and mails the result to the user:

train data = MergeObjects {
InpFileObj = file 1, file 2, file 3;
MergeMethod = Parallel;
OutFileName = MAIL<someone@@somewhere.ac.uk, The result of merging the 3 files>;

}

F.2.3 ColumnsArithmetic

This command performs row-wise and column-wise operations of the input file ob-

jects. For example, there are three file objects (A, B and C) associated with files whose
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data is formatted in columns. One would like to evaluate the following operation for

each row of the files:

sqrt(abs(Ai[3] - log((Bi[2]+Ci[5])/Ai[1])))

where Ai[j], Bi[j] and Ci[j] are the values of the ith row, jth column of the three files, i

runs from the first to the last row (or to the shortest row of the three) and j has the

value specified between square brackets.

Then, one might like to calculate the average value of the resultant column. All these

can be done with the ColumnsArithmetic instruction. Here is its syntax,

identifier = ColumnsArithmetic {

RowExpr

Required

=



This is an arithmetic expression where the following symbols

can be used and have their usual meaning: +-/*(), as well

as some user-defined (look for the ‘# ADD HERE’ string in

NeuralLib.pl) functions like abs and all awk built-in math-

ematical functions (sqrt, log, etc.). The operands are defined

formally as:

Column = [Lists] | FileObject[Lists]

It is the same as the Column description in the Extract-

ColumnsFromObjects instruction with the exception that

each of the Lists items must specify a single column.


DefaultFileObj

Optional

=


The file object from some or all of the Column items in the

Expression description may be omitted if this parameter is

defined.


ColExpr

Optional

=


A comma separated list of operations can be specified here so

that they be applied to the resultant column. These operations

include user-defined functions such as average and sum.


OutFileName

Optional

=


The name of the local file or channel where the result should

be sent to. If omitted, the file name will be constructed as

temp Identifier. See appendix F.7 for channel categories.


}

The following will produce the desired results for the problem introduced at the begin-

ning of this section:

train data = ColumnsArithmetic {
Row = sqrt(abs(A[3] - log((B[2]+C[5])/A[1])));
Col = average;

}
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The ColumnsArithmetic instruction uses awk. However, functions like abs or average

are not known to awk. abs is defined as a function at the beginning of the awk program,

every time it is called. average is a bit more complicated because it operates on all the

row elements. See the perl libraryNeuralLib.pl at the subroutine ColumnsArithmetic.

There is a section where one can define functions and functions in awk are fairly simple.

However, operations like average are a bit more difficult2. Consult you local awk man

page for more information and a list of the built-in functions.

Finally, note that awk has a limitation of the input variables it can use. The maximum

number of columns awk can handle is set at compile time. In any case, if you have

any problems it is better to get gawk3 from GNU’s archives and compile it to suit your

needs.

F.2.4 Deletion of objects

An object can be deleted at two levels. The first level is the computer memory.

Deleting an object from the memory still leaves files in the hard-storage device of the

computer. Unlink refers exactly to this second level of deletion and will include all the

files associated with this object (apart from InpFileObjs).

DeleteObjects{
Obj

Required

=

{
A comma separated list of objects (all three types of objects

are allowed).

}

Unlink

Optional

=


It can be Yes or No. No is the default. Yes will delete all the

files associated with all the objects specified. No InpFileObjs

will be deleted however.


}

F.3 npnp instructions: produce and/or format data sets

There are three commands relevant to producing and/or formatting data sets. One is

for vectored data of any sort, created by a function (artificial) or read from a file and

then formatted to so many inputs and outputs. The other two are for formatting time

series data read from a file and constructing a data set made of samples from various

images.

2 Actually the average operation was copied from the man page.
3 npnp uses gawk and not awk.
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F.3.1 Vectored data sets

The command ProduceAndFormatVectoredDataSet will either read data from an

ascii file and then format it, given the length of the required input and output vectors,

or create data using a function.

identifier = ProduceAndFormatVectoredDataSet {
NumInputs

Required

= {The number of inputs, the size of the input vector. }

NumOutputs

Required

= {The number of outputs, the size of the output vector. }

NumLines

Required

=

{
The number of input and output vector pairs. Usually every

pair is on a single line, hence NumLines.

}

NumOutputClasses

Optional

=



In the case when the output should be discrete and restricted

to take values from a finite set, the NumOutputClasses speci-

fies the size of this set. If discrete output is not required then

either omit it or set it to 0, which is the default. Use in con-

junction with the FirstClassAt and LastClassAt parameters

(see below).


FirstClassAt

Optional,

NumOutputClasses > 0

=


When the output is expected to be discrete and the

NumOutputClasses parameters was set to a positive integer,

this parameter must be set to the real number indicating the

value of the first class. See below for an example.



LastClassAt

Optional,

NumOutputClasses > 0

=



This is the value of the last class. An example follows: we need

to classify 5 images as follows: 0.0 maps to the first image, 0.5

maps to the second image, · · · , 2.5 maps to the fifth image. To

achieve, this one should set the FirstClassAt to 0.0 and the

LastClassAt to 2.5, while the NumOutputClasses must be 5.


OutFileName

Optional

=


The name of the local file or channel where the result should

be sent to. If omitted, the file name will be constructed as

temp Identifier. See appendix F.7 for channel categories.


QuantiseInputs

Optional,

NumOutputClasses > 0

=


It specifies whether the inputs as well as the outputs should be

quantised (discrete). The default is No, which means that the

inputs should be represented as continuous variables. A Yes

will quantise both inputs and outputs.
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InpFileObj

Required,

if Y is not present

=



The file object, created by an OpenFileObject or equivalent

command, associated with data the user wishes to read and

format it accordingly. If this parameter is specified, then the

Y parameter, which declares a function to produce data artifi-

cially, should be omitted.



Y

Required,

if InpFileObj

is not present

=



This parameter must specify the name of the function which

will be used to produce data artificially. So far, there are only

two functions available: Levy6 andRandom6. Do not use the

InpFileObj parameter if this one is used as they are mutually

exclusive. These functions are not built-in the npnp perl libraries.

Instead, they have been created independently using C (any

other language can be used). The only restriction is in the

format of the command-line parameters and the output.Inspect

the files Levy6.c andRandom6.c if you want to develop more

functions.



Seed

Optional

=



By setting this parameter to a positive integer (the seed to a

random number generator), it is guaranteed that as long as you

use the same number for the seed and the same random number

generator, you will obtain the same set of data, given that the

rest of the specified parameters remain constant. This is useful

in situations where you want to produce the same data set for

training different networks at different times or systems, where

storage or transfer is difficult or in the case when the original

data set was deleted. If on the other hand you want your data

set to be randomly chosen then either set this parameter to

Any or do not specify it at all.


}
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F.3.2 Data sets based on time series

The command FormatTimeSeriesDataSet will read time series data from an ascii

file and format it by sampling at the given input and output time points. A time series

simply consists of a measurement of a time-varying quantity at fixed time intervals.

ffnn may be used in exploring the correlations between various past time points and

the future. A multi-dimensional representation of the time series must be created by

constructing input and output vectors with the time series values at these past time

points. For example, if one wishes to check whether the next time series point can be

predicted by using the past five time point values, then one constructs the following

training file:

Input Output

T-5 T-4 T-3 T-2 T-1 T

where T runs through all the time series points. This process is called state-space

reconstruction, [Weigend, 1993], and this is what this command is supposed to do.

It is also possible to use many different time series files. For example one might want

to use the variation in the prices of petrol, iron and wheat (in files petrol.txt, iron.txt,

wheat.txt) in the prediction of some stock-market index (in file dow jones.txt). In this

case, declare all four file objects in the InpFileObj field with the object representing

the prediction data being last. If you want to include previous values of the Dow Jones

time series, include it twice. See the example at the end of this section for more details.

identifier = FormatTimeSeriesDataSet {

InpTimePoints

Required

=



It specifies the time points which will compose the input vec-

tor. This is a Lists item and therefore one can use the short-

cuts provided. See appendix F.8 for the Lists specification and

the relevant format. However, one is supposed not to use the

FIRST, LAST and ALL keywords, as they make no sense in

this context.


OutTimePoints

Required

=

{
It specifies the time points which will compose the output vec-

tor. Same as above.

}

NumLines

Required

=


The number of input and output vector pairs for each output

class. If you set this field to 20, say, and if you had 5 output

classes then the resultant file would have had 100 vectors.
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InpFileObj

Required

=


A list of comma separated file objects, created by an Open-

FileObject or equivalent command, associated with the time

series data file(s). The file(s) must be ascii and the values

(reals or integers) must be separated by white space.


NumOutputClasses

Optional

=


In the case when the output should be discrete and restricted

to take values from a finite set, the NumOutputClasses specifies

the size of this set.


FirstClassAt

Optional,

NumOutputClasses > 0

=


When the output is expected to be discrete and the

NumOutputClasses parameters was set to a positive integer,

this parameter must be set to the real number indicating the

value of the first class.


LastClassAt

Optional,

NumOutputClasses > 0

= {This is the value of the last class. }

QuantiseInputs

Optional,

NumOutputClasses > 0

=


It specifies whether the inputs as well as the outputs should

be quantised. The default is No, which means that the in-

puts should be represented as continuous variables. A Yes will

quantise both inputs and outputs.



OutFileName

Optional

=


The name of the local file or channel where the result should be

sent to. If omitted, which usually this is the case, then the file

name will be constructed as temp Identifier. See appendix

F.7 for channel categories.



Seed

Optional

=



By setting this parameter to a positive integer (the seed to a

random number generator), it is guaranteed that as long as

you use the same number for the seed, you will obtain the

same set of data, given that the rest of the specified parameters

remain constant. This is useful in situations where you want

to produce the same data set for training different networks at

different times or systems, where storage or transfer is difficult

or in the case when the original data set was deleted. If on the

other hand you want your data set to be randomly chosen then

either set this parameter to Any or do not specify it at all.


}

In the following example we create the data set for training a neural network to predict

the value of the Dow Jones index using previous Dow Jones values (predict T+40 using

T to T+20 and T+30 to T+39):
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dow jones = OpenFileObject {
Filename = dow jones.txt;

}
train data = FormatTimeSeriesData {

InpTimePoints = 1..20, 30..39;
OutTimePoints = 40;
NumLines = 100;
InpFileObj = dow jones;

}

While the following example uses four additional time series in the input vector:

petrol = OpenFileObject {
Filename = petrol.txt;

}
iron = OpenFileObject {

Filename = iron.txt;
}
wheat = OpenFileObject {

Filename = wheat.txt;
}
dow jones = OpenFileObject {

Filename = dow jones.txt;
}
train data = FormatTimeSeriesData {

InpTimePoints = 1..20, 30..39;
OutTimePoints = 40;
NumLines = 100;
InpFileObj = petrol, iron, wheat, dow jones;

}

F.3.3 Data sets for image classification

The command FormatImagesDataSet will read a binary (1 byte = 1 pixel value,

no header information) file which has been constructed by concatenation of all the

images4 that the user needs to classify. For example, if one has some images that form

5 categories (classes). Suppose there are 5 directories called CLASS 1, CLASS 2, . . .,

CLASS 5, and each of the directories contains 3 images of the same class. Note that

each directory must have an equal number of images and all images must be of the

same dimensions,, say W×H. In order to construct the master data file, one can do

(assume csh or derivatives):

% foreach i (CLASS ∗) ¬
? cd $i ¬
? foreach j (∗) ¬
? echo ”Class: $i, Image: $j” ¬
? cat $j >> ../MASTER IMAGES ¬
? end ¬
? cd .. ¬
? end ¬

4 The individual images must be of the same dimensions.
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Remember that the MASTER IMAGES file contains 15 images of 5 classes and the

dimensions of each class are W×3×H.

identifier = FormatImagesDataSet {
Width

Required

=

{
The width of each of the images (W in the above example) in

the input file.

}

Height

Required

= {The height of each of the images (3×H) in the input file. }

WindowWidth

Required

=



It is common in image classification to operate on subsets of

the images rather than the whole. In this way, better generali-

sation is achieved, while adequately small data sets have to be

processed. This parameter refers to the width of the sampling

window which will provide the subsets.


WindowHeight

Required

=


The sampled data will, therefore, consist of:

WindowWidth×WindowHeight elements

The height of the sampling window.


NumLines

Required

=

{
The number of input and output vector pairs taken from each

individual image.

}

FirstClassAt

Required

=

{
This parameter must be set to the real number indicating the

value of the first class. See below for an example.

}

LastClassAt

Required

=



This is the value of the last class. For example, in order to

classify the 5 images of our example as follows: 0.0 maps to

the first image, 0.5 maps to the second image · · · and 2.5

maps to the fifth image, one may set the FirstClassAt to

0.0 and the LastClassAt to 2.5.


InpFileObj

Required

=


The file object, created by an OpenFileObject or equivalent

command, associated with a binary file which holds all the

images which will be used in the classification (this file is called

MASTER IMAGES in our example).


ScalingFactor

Optional

=


The pixel values are integers in the range 0 to 255. If you

want to transform them to some other range then specify a

real number here which all the pixel values will be divided by.
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Padding

Optional

=



If you want to create a data set which is partly composed of

the contents of your images data set and the rest being set

to an arbitrary pixel value (see PaddingValue) then set this

parameter to a positive integer representing the width of the

frame around the sampling window. It is useful if you want to

experiment with testing a network with data which has fewer

pixels than its inputs.


PaddingValue

Optional,

valid if Padding > 0

=

{
The pixel values composing the surrounding frame of the data

set. See Padding.

}

OutFileName

Optional

=


The name of the local file or channel where the result should

be sent to. If omitted, which usually this is the case, then the

file name will be constructed as temp Identifier. This file is

ascii. See appendix F.7 for channel categories.



Seed

Optional

=


By setting this parameter to a number you will know that every

time you use the same number, you will obtain the same set of

data. If on the other hand you want something different every

time you run the command then do not specify this variable at

all.


}

F.4 npnp instructions: single FFNN

The process for training or testing a neural network starts with creating it first. The

creation process will associate an identifier with a ffnn or adaline of the specified

architecture and other properties. So, in effect, the identifier will carry all the static

properties of that ffnn / adaline.

Once the network has been created, training and testing can take place. Here too, one

has to supply some parameters. However, these parameters are not static, but, rather,

they are dynamic and are forgotten when the process is finished, while the network

remains to be used again. The results of training are saved to the weights file of the

network.
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F.4.1 Creation

It will return an identifier which will be associated with the parameters specified.

Using this identifier, the program will be able to retrieve all the user preferences for

the particular network. When this network is no longer of any use, destroy it using the

DeleteObjects command.

identifier = CreateSingle {

Arch

Required

=


The architecture of the net represented as positive integers sep-

arated by space. For example, 3 13 12 1 results to a network

of 3 inputs, 1 output, and 2 hidden layers with 13 and 12 units

each.


Sigmoid

Optional

=

{
Should the output neurons of the network be sigmoided (i.e.

R → [0, 1])? Yes or No. No is the default.

}

SingleType

Required

=

{
Specify the type of the single network. At present, this

can be a ffnn or an adaline.

}

Weights

Optional

=


This is the name of the file holding the final weights for this

network. If this parameter is not specified a file name will be

constructed as weights Identifier, where identifier refers

to the instruction’s identifier.


NumOutputClasses

Optional

=


In the case when the output should be discrete and restricted

to take values from a finite set, the NumOutputClasses specifies

the size of this set.


FirstClassAt

Optional,

NumOutputClasses > 0

=


When the output is expected to be discrete and the

NumOutputClasses parameters was set to a positive integer,

this parameter must be set to the real number indicating the

value of the first class.


LastClassAt

Optional,

NumOutputClasses > 0

= {This is the value of the last class. }

Derivatives

Optional

=


If the derivative of the output of this unit w.r.t. its input is

required, then specify the (base) file name to save it, with this

parameter.


}
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F.4.2 Training

The TrainSingle command will train the single unit (ffnn or adaline) associated

with the value of the Obj parameter supplied. Training needs a data file (defined by

a file object) which must contain a number (NumLines) of input and output vectors,

also known as exemplars. This file object can be created by the produce and/or format

data sets mentioned in previous sections.

The process of training consists of feeding the input vector to the unit, obtain an out-

put vector, compare the obtained output with the expected output, as defined in the

training data file mentioned above, and calculate a discrepancy vector. The discrep-

ancy or error vector has to be minimised by re-adjusting the strengths of the internal

connections, known as the weights, of the network. This process is repeated several

times (Iters).

The C program NNengine will be used for the training process. It can be interrupted

at any point by a Ctrl-C or sending an SIGINT signal to the process (kill -INT).

The training process is often compared to the process of walking down a mountain to

a valley. Our aim is to get to a lower altitude as quickly as possible. Therefore at the

current position we sample the terrain around us for the steepest slope (gradient) and

we jump to a new position in its direction. The question is, how big our jump should be.

If we jump in small steps, then we can detect changes in the steepest descent direction

faster, but we will reach the valley much later due to the increased number of jumps.

On the other hand, we can do really big jumps and risk loosing our direction. We

also risk, when we are deep in the valley enough, to jump on the opposite bank... The

parameter that controls the magnitude of the change in the weight’s vector is called the

rate of learning, β. Another factor that controls training is the momentum, λ. This

parameter indicates how much the new weight vector will be composed of the current

one. This parameter sometimes leads to unstable behaviour with the error oscillating.

Unless somebody is watching over the training process, set this parameter to zero or

to some very small (less than 0.05, say) number.

TrainSingle {
Obj

Required

=

{
An single unit object previously created by the CreateSingle

command.

}

Iters

Required

= {The number of training iterations. }
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InpFileObj

Required

=


This is the file object, created by OpenFileObject or equivalent,

associated with the training data file. It is an ascii file of floats

or integers and consists of lines of pairs of input and output

vectors.



WeightsUpdate

Optional

=



This parameter controls the way the weight vector is updated.

There are two options: Exemplar which updates the weights

every time a new exemplar is presented to the network, or

Epoch which updates the weights after all the exemplars have

been presented to the network. The default value is Exemplar.


Lamda

Optional

=


The momentum term. Another parameter which controls the

training process. Use a very small number. If omitted, a default

value will be used.


XDisplay

Optional

=


Specifies an X-windows display name (e.g. air-

gialla.sarc.city.ac.uk:0.0) where a real-time plot of the

training error and rate of training error should be sent for

monitoring.


Seed

Optional

= {The seed to feed the random number generator. }

Beta

Optional

=



The rate of learning. Usually set it between 0.05 to 1.2. Better,

still, set it to a high number at the beginning and then use the

kill -USR1 pid or kill -USR2 pid (pid is the NNengine

process id) to increase or decrease beta at run-time. There is

a simple front end for this process called NNChange.tcl for

those who have the tcl/tk package. if this parameter is not

given, the default value will be used.



TrainingType

Optional,

NumOutputClasses > 0

(from Obj)

=



The output of the neural network is, by nature, continuous.

If discrete output was specified (Obj parameters) then quanti-

sation takes place. In this case the error can be calculated ei-

ther as the discrepancy between expected output and actual

continuous output or expected output and actual dis-

crete output. The TrainingType parameter indicates which

of the two methods of error calculation should be followed:

Continuous or Discrete. The default is Continuous.


}
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F.4.3 Testing

Once the network has been created and trained, and the weight vector is saved in a

file, one may use the TestSingle command in order to feed some inputs in the network

and obtain an output.

TestSingle {
Obj

Required

=

{
A single unit object previously created by a CreateSingle com-

mand

}

InpFileObj

Required

=


This is the file object, created by OpenFileObject or equivalent,

associated with the testing data file. It is an ascii file of floats

or integers and consists of lines of input vectors (only).


ShowInputs

Optional

=


The output of this command may consist of either both the

input and obtained output vectors (Yes) or only the output

vectors (No, the default).


OutFileName

Optional

=


The name of the file or channel where the output of the network

should be sent to. If omitted a local file will be created with the

name final output Identifier. See appendix F.7 for channel

categories.


}

F.5 npnp instructions: Entities

Creating, training and testing the entities is similar to the case of the single units.

Given the required entity class, the program will create a file which will contain in-

structions to create, train and test the entity. Note that an entity can be composed of

not only ffnn but also of adaline or any other single unit might be implemented.

There is a quicker way to describe a ffnn or an entity of ffnn. This is called a con-

figuration script (see appendix F.9 for more details). The description of an entity of a

given specification is generated by some C language programs (ProduceClass?Script.c)

as a configuration script. However, unless the user needs to create some more entity

classes, or modify the existing ones, these files as well as the configuration script may

be completely ignored.
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F.5.1 Creation

The creation of an entity is more or less the same as the creation of a single unit. Some

of the parameters, however, differ.

identifier = CreateEntity {

NumInputs

Required

=


This is the number of elements that the input data vector con-

tains. It must be greater than 10 because, otherwise, it is not

very practical to bother with an entity.


Sigmoid

Optional

=


Should the output neurons of the network be sigmoided (i.e.

R → [0, 1])? Yes or No. No is the default. This parameter is

relevant to the single units composing the entity.


EntityClass

Required

=

{
Currently, there are three classes that one may chose from: 1,

2 and 3.

}

EntityType

Required

=

{
Specify the type of single units that make up this entity.

Presently there are two choices ffnn or adaline.

}

MinNumInputs

Required,

if the ConfFile

is to be created.

=


The number of inputs to every single unit composing the entity

is selected at random. However, the user may chose an upper

and lower bound to the number of inputs. This is the lower

bound.


MaxNumInputs

Required

=

{
This specifies the upper bound to the number of inputs each

single unit should have.

}

BPWeights

Optional

=


If an entity with adjustable connections between its various

units is required then specify the (base) file name to hold this

weights with this parameter.


Derivatives

Optional

=


If the derivatives of the output of each single unit w.r.t. its

input are required, then specify the (base) file name to hold

them, with this parameter.


Seed

Optional

=


By setting this parameter to a number you will know that ev-

ery time you use the same number, you will obtain the same

configuration for the entity. The same number of inputs, etc...
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Weights

Optional

=



This is the base name for all the weights files that will be used

in association with all the single units. The weight file for the

single unit whose identifier is, say, SFI, is weights SFI. If

this parameter is not specified then the default value given will

be temp Identifier, where identifier refers to the Entity

identifier.


NumOutputClasses

Optional

=


In the case when the output should be discrete and restricted

to take values from a finite set, the NumOutputClasses specifies

the size of this set. This parameter is relevant to the single units

composing the entity.



C1, C2

Optional

=



These two parameters are relevant only to the Class 1 entity.

This class is a collection of randomly interconnected units (i.e.

there is no predefined structure). C1 specifies the number of

first layer units (i.e. those that accept inputs from the data

input vector and not from another unit). C2 specifies the to-

tal number of layers in the entity interconnection scheme. By

‘layers’ we mean those units (single units) which belong to the

same probability group of input assignment.



ConfFile

Optional

=



As mentioned above, some external executables will create a

configuration script which will be the basis for constructing

the final npnp script for the entity. This parameter specifies the

name of this file. The configuration script will have the exten-

sion ‘.con’, the npnp script file will have the extension ‘.create’. If

omitted, the default base name temp Identifier will be used.

If this parameter is defined but the Min/MaxNumInputs are un-

defined, the program will understand that there is already an

existing configuration script which should be read, instead of

creating a new one.



FirstClassAt

Optional,

NumOutputClasses > 0

=



When the output is expected to be discrete and the

NumOutputClasses parameter was set to a positive integer, this

parameter must be set to the real number indicating the value

of the first class. This parameter is relevant to the single units

composing the entity.


LastClassAt

Optional,

NumOutputClasses > 0

= {This is the value of the last class. }

}
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F.5.2 Training

This process is similar to that of training a single unit. At first, the configuration

script file is read and the npnp script5 to train the entity is constructed. Then it is called

and the training procedure commences.

TrainEntity {
Obj

Required

=

{
An Entity object previously created by the CreateEntity com-

mand.

}

InpFileObj

Required

=



This is the file object, created by OpenFileObject or equivalent,

associated with the training data file. It is an ascii file of floats

or integers and consists of lines of pairs of input and output

vectors. One input file is used for the entire entity. The user

needs not to worry about partitioning it. The program will

take care of that. So, if you are training a 1000-input entity

your input file must contain 1000 columns for the input vector.



WeightsUpdate

Optional

=



This parameter controls the way the weight vector is updated.

There are two options: Exemplar which updates the weights

every time a new exemplar is presented to the network, or

Epoch which updates the weights after all the exemplars have

been presented to the network. The default value is Exemplar.

This parameter is relevant to all the single units.



XDisplay

Optional

=


Specifies an X-windows display name (e.g. air-

gialla.sarc.city.ac.uk:0.0) where a real-time plot of the

training error and rate of training error should be sent for

monitoring.



TrainingType

Optional

=



The output of the neural network is usually continuous. If

discrete output is required then quantisation must take place.

In this case the error can be calculated either as the discrep-

ancy between expected output and actual continuous out-

put or expected output and actual discrete output. The

TrainingType parameter indicates which of the two methods

of error calculation should be followed: Continuous or Dis-

crete. The default is Continuous. This parameter is relevant

to all the single units.


5 The ConfFile of the creation process with the ‘.train’ extension.
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Hosts

Optional

=



A comma separated list of hosts (internet address format, nu-

merical or other). If this field is defined, the process of training

an entity is broken into sub-tasks which are sent to each speci-

fied host and , thus, parallelising the training process. The user

must have access to all of the hosts (using unix’s rsh and rcp,

note that some systems have such features disabled for security

reasons) and each host must have a copy of all the necessary

files to run npnp . The user needs not to be concerned with copy-

ing the data files to all hosts. Because of how rsh works, npnp

requires a list of paths for each host. See the SetPath instruc-

tion. An example script which parallelises the training process

can be found in EXAMPLES/Parallel.np. Parallelisation of

training is only possible with entity architectures which allow

for breaking the process into sub-tasks (Classes 1 and 2).


Iters

Optional

=


The minimum number of training iterations for each single

unit. If omitted a default of 1000 iterations will be used. This

parameter is relevant to all the single units.


Beta

Optional

=


The rate of learning. Everything mentioned for the single unit

case applies here too. This parameter is relevant to all the

single units.


Lamda

Optional

=

{
The momentum term. This parameter is relevant to all the

single units.

}

}

F.5.3 Entities with connections of adjustable strength

The connections between the various units composing an entity may be variable. In this

case, after each single unit is trained in the usual way (using the TrainEntity instruc-

tion), the weights of the entity connections can be optimised using gradient descent.

This instruction does exactly this. With or without adjustable strength connections,

the entities can be tested using the TestEntity instruction.

TrainEntity {
Obj

Required

=

{
An Entity object previously created by the CreateEntity com-

mand.

}

InpFileObj

Required

=

{
This is the file object, created by OpenFileObject or equivalent,

associated with the training data file.

}
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WeightsUpdate

Optional

=



This parameter controls the way the weight vector is updated.

There are two options: Exemplar which updates the weights

every time a new exemplar is presented to the network, or

Epoch which updates the weights after all the exemplars have

been presented to the network. The default value is Exemplar.

This parameter is relevant to all the single units.



XDisplay

Optional

=


Specifies an X-windows display name (e.g. air-

gialla.sarc.city.ac.uk:0.0) where a real-time plot of the

training error and rate of training error should be sent for

monitoring.



TrainingType

Optional

=



The output of the neural network is usually continuous. If

discrete output is required then quantisation must take place.

In this case the error can be calculated either as the discrep-

ancy between expected output and actual continuous out-

put or expected output and actual discrete output. The

TrainingType parameter indicates which of the two methods

of error calculation should be followed: Continuous or Dis-

crete. The default is Continuous. This parameter is relevant

to all the single units.


Iters

Optional

=


The minimum number of training iterations for each single

unit. If omitted a default of 1000 iterations will be used. This

parameter is relevant to all the single units.


Beta

Optional

=


The rate of learning. Everything mentioned for the single unit

case applies here too. This parameter is relevant to all the

single units.


Lamda

Optional

=

{
The momentum term. This parameter is relevant to all the

single units.

}

WeightsRange

Optional

=


Four real numbers separated by space or comma to denote the

range (min,max) of the starting weights and biases. The ac-

tual value of each weight and bias will be determined by the

random number generator and the specified seed.


Seed

Optional

= {The seed to feed the random number generator. }

}
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F.5.4 Testing

Again, this process is similar to that of training a single unit. At first, the configuration

script file is read and the npnp script for training (the ConfFile of the creation process

with the ‘.test’ extension) the entity is constructed. Then it is called and the forward

pass (testing) begins.

TestEntity {

Obj

Required

=


An Entity object previously created by the CreateEntity com-

mand and trained with the TrainEntity and, optionally, the

BackpropagateEntity instructions.



InpFileObj

Required

=



This is the file object, created by OpenFileObject or equivalent,

associated with the testing data file. It is an ascii file of floats

or integers and consists of lines of input vectors (only). Again,

this file will be used for the entire entity, no need to partition

it for the needs of the single units.


OutFileName

Optional

=


The name of the file or channel where the output of the network

should be sent to. If omitted a local file will be created with the

name final output Identifier. See appendix F.7 for channel

categories.


ShowInputs

Optional

=


The output of this command may consist of either both the

input and obtained output vectors (Yes) or only the output

vectors (No, the default).


}

F.6 Various other npnp instructions

F.6.1 Unlink a file

It will unlink (delete) local files given their filename (plus path).

Unlink {
Filename

Required

= {A comma separated list of file names (not file objects). }

}



F. the np script language and interpreter 215

F.6.2 Include an npnp script file

It will read the npnp script file specified and will execute all the commands found until

the end of file marker. It will then resume the execution of the initial file.

IncludeFile {
Filename

Required

=

{
The name of a local file or a channel whose contents are valid

npnp script language instructions.

}
}

F.6.3 Execute a system command

The command System executes a perl system command:

System {

Com...

Required

=


At least one command is required. More commands can be

defined by using a parameter identifier starting with Com.

Make sure that the command is valid and that can be found in

the path. Use full path name if unsure.


}

F.6.4 Debugging npnp scripts

The DumpCurrentObjects instruction will send a list of all the objects currently in

memory along with their respective parameters and their values to stderr or to the

named OutFileName.

DumpCurrentObjects {
OutFileName

Optional

= {A local file or channel that the information is to be sent to. }

}

F.6.5 SendInformation

The SendInformation instruction will write some information regarding the execution

of the current npnp script (like executable name, input script name, host, user name, date

and time started, current date and time) plus any message the user defines, to stderr

or to the named OutFileName (a channel).
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SendInformation {
OutFileName

Optional

= {A local file or channel that the information is to be sent to. }

Message

Optional

= {Some text to be added to the information sent. }

}

F.6.6 SetPath

The SetPath instruction will let npnp know the path in which to search for executables

for a given host. When npnp attempts to execute a command to a remote host using rsh

(for example when parallelising the training process of an entity, see the TrainEntity

instruction), it needs to know where to search for the required executables.

SetPath {
Address

Optional

= {Space separated paths. }

}

For example:

SetPath {
host1.city.ac.uk = /usr/bin /vol/gnu/bin /homes/fred/bin solaris;
host2.city.ac.uk = /usr/bin /vol/gnu/bin /homes/fred/bin linux;

}

F.7 Files and Channels

A Filename parameter can be either a local file name, obeying the unix system’s

path conventions, or a channel name referring to a remote destination accessible by

the network.

There are various categories and sub-categories for the channel. These are:

1. File handles:

• STDIN: The standard input, use HANDLE<STDIN>,

• STDOUT: The standard output, use HANDLE<STDOUT>,

• STDERR: The standard error, use HANDLE<STDERR>,
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• User defined: A handle opened by the perl function open,

use HANDLE<A HANDLE>

2. Host to host communication protocols:

• mail: Send data using sendmail, useMAIL<host@@e-mail address, subject>,

• rcp: Remote copy, use RCP<host, remote path/filename>,

• ftp: File transfer protocol, use FTP<host, login, passwd, filename>.6.

3. Interprocess communication:

• sockets: Unix sockets, use SOCKET<host, port number>7.

F.8 The Lists specification

A Lists item is defined as:

Integer = [0-9]+ | FIRST | LAST

Expansion = Integer..Integer | ALL
Integers = Integer | Integer Integers | Integers Expansion
List = Integers | Integers EXCEPT Integers

Lists = List | List, Lists

Note that the keywords FIRST, LAST and ALL must be defined if you want to use

them. For example it is allowed to use them in the ExtractColumnsFromObject com-

mand because there is a way to find out the total number of columns in the file objects.

However, it is not allowed to use them to define time points (e.g. InpTimePoints).

Special concession is made for FIRST where we assumed that if not defined then it

takes the value of 1.

Here are some examples:

1..5 = 1 2 3 4 5

1..5 10 = 1 2 3 4 5 10

FIRST..5 LAST = 1 2 3 4 5 25 (only when FIRST and LAST are defined)

ALL EXCEPT 5..LAST, 10 = 1 2 3 4 10 (only when ALL is defined)

6 Not yet implemented.
7 Not yet implemented. There are enough protocols already.
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F.9 The Configuration Script format

Some definitions:

• Oi denotes the actual output obtained by a single ffnn. This is a matrix as it

covers all the outputs of the ffnn in width and all the exemplars (NumLines) in

height,

• X is the identifier of the file object associated with the input matrix. X[Lists]

denotes a matrix composed of vectors from X as specified by Lists,

• Y and Y [Lists], as above,

• Ei denotes the result of vector arithmetic,

• id denotes the identifier of a single ffnn,

• iv is one of X, Oi and Ei. An empty iv defaults to X,

• ov is one of Y and Ei,

• v is one of iv and ov,

• d is one of Oi or Ei,

• α denotes the number of input and β the number of output vectors to the par-

ticular ffnn.

• γ denotes the layer number and δ the total number of units in this layer.

There are three kind of statements that are allowed to exist in a configuration script:

1. Oi = (IV1[Lists] : IV2[Lists] : · · · ), (OV1[Lists] : OV2[Lists] : · · · ), ID, (α, β), (γ,

δ);

This is a declaration of a neural network identified by ‘ID’, its output is ‘Oi’. It has

α inputs given by all the IVi[Lists] and has β outputs given by all the OVi[Lists]. γ

and δ are used in the case when decomposition of the training process for parallel

execution is required. In this case, units that belong to the same layer (i.e. same

γ) may be trained independently (which means that none of these units sends its

output to or receives its input from another unit of the same layer). δ informs

npnp of the total number of units in this layer so that the task is divided evenly

among the remote hosts. Remember that the configuration script is created in

conjunction with the CreateEntity, TrainEntity and TestEntity. Therefore the

input and output vectors refer to the InpFileObj.
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2. Ei = Vk[Integer] - Vl[Integer];

This creates a vector Ei as the result of the difference between two other vectors

Vk[Integer] and Vl[Integer]. Note that this operation involves vectors and not

matrices, hence a single Integer.

3. DEL(D1, D2, · · · , Di);

Will delete (unlink) all the objects identified by D1, D2, · · · , Di.

Consider the following example configuration script:

O1 =([1,2,3,4]),(Y[1]),N1,(4,1);

E1 =O1[1]-Y[1];

O2 =(X[5,8]:O1[1]),(E1[1]),N2,(3,1);

E2 =O2[1]-E1[1];

DEL(O1, E1, O2);

The 1st line calls for a neural network identified by N1 which has 4 inputs and 1 output.

Its input vector is constructed from the 1st, 2nd, 3rd and 4th element of the input vector

of the training file for the whole entity (InpFileObj). The output consists of a single

element, the first (and probably the only one) element of the output vector of the

training file. The output goes to a file object identified by O1.

The 2nd line will calculate the discrepancy vector between the first element of the O1

file object and the first element of Y, the expected output.

The 3rd line calls, again, for a neural network identified by N2. It has 3 inputs and

1 output. Its inputs come from two sources. The first two inputs are the 5th and 8th

vectors of the training file (InpFileObj), input vectors part. The 3rd input comes from

the 1st vector of the file identified by O1 (i.e. the output of N1). Its output comes from

the discrepancy vector calculated in line 2 (E1, the [1] index is somewhat redundant).

The 4th line, again, calculates the discrepancy vector between what the output of N2

should have been (E1[1]) and what actually is (O2[1]).

Finally, the 5th line will delete all the output files of the two networks (O1 and O2) as

well as the discrepancy vector (E1).
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F.10 Alphabetical listing of all npnp instructions

identifier = BackpropagateEntity {
Obj = · · · ; (Required)
InpFileObj = · · · ; (Required)
Iters = · · · ; (Optional)
WeightsRange = · · · ; (Optional)
Seed = · · · ; (Optional)

Beta = · · · ; (Required)
Iters = · · · ; (Required)
Lamda = · · · ; (Required)
TrainingType = · · · ; (Optional)

XDisplay = · · · ; (Optional)
} identifier = ColumnsArithmetic {

RowExpr = · · · ; (Required)
DefaultFileObj = · · · ; (Optional)
ColExpr = · · · ; (Optional)
OutFileName = · · · ; (Optional)

} identifier = CreateEntity {
NumInputs = · · · ; (Required)
EntityClass = · · · ; (Required if the ConfFile is to be created.)
EntityType = · · · ; (Required)
MinNumInputs = · · · ; (Required if the ConfFile is to be created.)
MaxNumInputs = · · · ; (Required)
Seed = · · · ; (Optional)
C1, C2 = · · · ; (Optional)
ConfFile = · · · ; (Optional)
Sigmoid = · · · ; (Optional)
Weights = · · · ; (Optional)
BPWeights = · · · ; (Optional)
Derivatives = · · · ; (Optional)
NumOutputClasses = · · · ; (Optional)
FirstClassAt = · · · ; (Optional, NumOutputClasses > 0)
LastClassAt = · · · ; (Optional, NumOutputClasses > 0)

} identifier = CreateSingle {
Arch = · · · ; (Required)
SingleType = · · · ; (Required)
Sigmoid = · · · ; (Optional)
Weights = · · · ; (Optional)
NumOutputClasses = · · · ; (Optional)
FirstClassAt = · · · ; (Optional, NumOutputClasses > 0)
LastClassAt = · · · ; (Optional, NumOutputClasses > 0)

} DeleteObjects {
Obj = · · · ; (At least one is required, comma separated)
Unlink = · · · ; (Optional)

}DumpCurrentObjects { } identifier = ExtractColumnsFromObjects {
Columns = · · · ; (Required)
DefaultFileObj = · · · ; (Optional)
OutFileName = · · · ; (Optional)

} identifier = FormatImagesDataSet {
Width = · · · ; (Required)
Height = · · · ; (Required)
WindowWidth = · · · ; (Required)
WindowHeight = · · · ; (Required)
NumLines = · · · ; (Required)
FirstClassAt = · · · ; (Optional)
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LastClassAt = · · · ; (Optional)
Padding = · · · ; (Optional)
PaddingValue = · · · ; (Optional)
ScalingFactor = · · · ; (Optional)
InpFileObj = · · · ; (Required)
OutFileName = · · · ; (Optional)
Seed = · · · ; (Optional)

} identifier = FormatTimeSeriesDataSet {
InpTimePoints = · · · ; (Required)
OutTimePoints = · · · ; (Required)
NumLines = · · · ; (Required)
InpFileObj = · · · ; (At least one is required, comma separated)
NumOutputClasses = · · · ; (Optional)
FirstClassAt = · · · ; (Optional)
LastClassAt = · · · ; (Optional)
QuantiseInputs = · · · ; (Optional)
OutFileName = · · · ; (Optional)
Seed = · · · ; (Optional)
} IncludeFile {
Filename = · · · ; (Required)

} identifier = MergeObjects {
InpFileObj = · · · ; (At least one is required, comma separated)
MergeMethod = · · · ; (Optional)
OutFileName = · · · ; (Optional)

} identifier = ProduceAndFormatVectoredDataSet {
NumInputs = · · · ; (Required)
NumOutputs = · · · ; (Required)
NumLines = · · · ; (Required)
NumOutputClasses = · · · ; (Optional)
FirstClassAt = · · · ; (Optional, NumOutputClasses > 0)
LastClassAt = · · · ; (Optional, NumOutputClasses > 0)
QuantiseInputs = · · · ; (Optional, NumOutputClasses > 0)
InpFileObj = · · · ; (Required if Y is not present)
Y = · · · ; (Required if InpFileObj is not present)
OutFileName = · · · ; (Optional)
Seed = · · · ; (Optional)

} SendInformation {
OutFileName = · · · ; (Required)
Message = · · · ; (Optional)

} SetPath {
Hostname = Path; (At least one is required, space separated)
Hostname = Path; (At least one is required)
· · ·

} System {
Com. . . = · · · ; (At least one is required)

} TestEntity {
Obj = · · · ; (Required)
InpFileObj = · · · ; (Required)
OutFileName = · · · ; (Optional)
ShowInputs = · · · ; (Optional)

} TestSingle {
Obj = · · · ; (Required)
InpFileObj = · · · ; (Required)
OutFileName = · · · ; (Optional)
ShowInputs = · · · ; (Optional)

} TrainEntity {
Obj = · · · ; (Required)
InpFileObj = · · · ; (Required)
Iters = · · · ; (Optional)
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Beta = · · · ; (Optional)
Lamda = · · · ; (Optional)
WeightsUpdate = · · · ; (Optional)
TrainingType = · · · ; (Optional)
Hosts = · · · ; (Optional)

XDisplay = · · · ; (Optional)
} TrainSingle {

Obj = · · · ; (Required)
Seed = · · · ; (Required)
Iters = · · · ; (Required)
InpFileObj = · · · ; (Required)
Beta = · · · ; (Optional)
Lamda = · · · ; (Optional)
WeightsUpdate = · · · ; (Optional)
TrainingType = · · · ; (Optional)

XDisplay = · · · ; (Optional)
} Unlink {

Filename = · · · ; (At least one is required, comma separated)

}
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example npnp scripts

Below is an example of an npnp program. It demonstrates how easy training and testing

an ffnn entity can be,

# Create a training data set of 60 lines using the Levy function

# with 500 input variables.

training data = ProduceFormatVectoredDataSet {
NumInputs = 500;

NumOutputs = 1;

NumLines = 60;

Y = Levy6;

Seed = 1974;

}
# Create a Class 1 entity of ffnn with 500 inputs

entity = CreateEntity {
SingleType = FFNN;

NumInputs = 500;

EntityClass = 1;

MinNumInputs = 12;

MaxNumInputs = 35;

Seed = 1975;

}
# Train the entity for 1000 iterations with specified rate of learning

# Furthermore, parallelise the training process and distribute it among the four

# remote hosts specified.

TrainEntity {
Obj = entity;

InpFileObj = training data;

Iters = 1000;

Beta = 0.095;

Lamda = 0.0;

Hosts = altair, zeta, spica, vega;

}
# produce the test set again with the Levy function

# but different seed and a lot more lines (2000)

223
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test data = ProduceAndFormatVectoredDataSet {
Y = Levy6;

NumInputs = 500;

NumOutputs = 1;

NumLines = 2000;

Seed = 1971;

Y = Levy6;

}
# ... and test the entity

# the output is contained in a file called final

TestEntity {
Obj = entity;

InpFileObj = test data;

OutFileName = final;

}

The first instruction of the above program, ProduceFormatVectoredDataSet, will cre-

ate the training data file which is then referred to by the name of training data. The

number of input dimensions, the number of vectors as well as which data-generating

function should be used, are all specified by the parameters included in the body –

the text between the two curly brackets following the instruction. Each definition (e.g.

NumInputs = 500; ) in the body of the instruction must end in a semi-colon.

A lot of operations within the npnp system require a random number generator. For

example, the inputs to the Levy function are produced randomly (see also section 6.3.5

on page 89). However, we would also like to be able to reproduce exactly such initial

conditions because of issues of repeatability. In this respect, the deterministic nature

of the computer’s random number generator is an advantage because these “random”

decisions can be repeated by supplying the same seed, using the Seed keyword.

The instruction CreateEntity will create a ffnn entity (a C1 entity in this case, as

specified by the keyword EntityType) with a total of 500 inputs (as specified by the

keyword NumInputs). The npnp interpreter is instructed to construct each individual

ffnn unit in the entity with a number of inputs between 12 and 35 (the keywords

MinNumInputs and MaxNumInputs). The total number of ffnn as well as the inter-

connection map are determined randomly. The Seed keyword may, again, be used to

regenerate exactly a previous configuration. If omitted, the random number generator

will be seeded with the current time – a usual tactic for creating unique random number

sequences.

Following, is the instruction (TrainEntity) to train the created entity object, referred
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to by the identifier entity, with the data set referred to by the identifier training data.

The Hosts keyword contains a list of domain names or IP addresses of computers in

the network to which the training procedure should be distributed (e.g. parallelised

training). Currently, these hosts must be running Unix. However, npnp can easily be

extended so that it runs on a wider range of operating systems by rewriting certain

parts of it in the Java language.

Once training is completed, the test data set will be created, using the instruction

ProduceFormatVectoredDataSet. The seed is different than before because we need

the test set to be different from the training set. Also, the number of vectors specified

is much larger than before.

Finally, the command to test the entity (TestEntity) is given by defining which entity

we require and what test data set it should be tested with. The output of the entity

goes to a file called final. Obtaining a performance measure can be done with the

following program. Note that this program has to be appended at the end of the

previous program.

# Create a separate data object which holds just the expected output.

# Remove the input vector columns

expected output = ExtractColumnsFromObject {
Columns = test data[LAST];

}
# Now, open the file called final which contains the

# obtained entity output ...

actual output = OpenFileObject {
Filename = final;

}
# ... and calculate the error.

error = ColumnsArithmetic {
# mean square error estimate

RowExpr = 0.5 * ((actual output[1] - expected output[1]) ** 2);

ColExpr = average;

OutFileName = error;

}
$

The first instruction of the above program will extract the last column from the test

data set. This is done by specifying which column should be extracted. The expression

“test data[LAST]” refers to the last column of the test data file – e.g. the expected

output. This column should then be compared to the actual output, contained in the

final file which is opened with the second instruction (OpenFileObject).
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Finally, the ColumnsArithmetic instruction will perform the mathematical expression

defined by the keyword RowExpr for each row of the specified data objects. Do not

forget that, by now, the objects actual output and expected output contain just a

single column which can be referred to by fixing the ‘[1]’ after the object name, e.g.

expected output[1]. The RowExpr is nothing else than one half of the square of the

discrepancy between expected and obtained outputs. Finally, the keyword ColExpr

specifies that all the elements of the resultant column should be summed up and the

average be taken and dumped to the output file, error.

G.1 Some more npnp scripts

This is an example npnp script which will train a C1 entity (referred as entity) with

training data (referred to as train data) produced by the Levy function. Training

takes place in parallel over four different computers in the network.

# Author: A.Hadjiprocopis

SetPath {
altair.soi.city.ac.uk = /usr/bin /vol/gnu/bin;

vega.soi.city.ac.uk = /usr/bin /vol/gnu/bin;

spica.soi.city.ac.uk = /usr/bin /vol/gnu/bin;

zeta.soi.city.ac.uk = /usr/bin /vol/gnu/bin;

}
train data = ProduceAndFormatVectoredDataSet {

Y = Levy6;

NumInputs = 500;

NumOutputs = 1;

NumLines = 70;

Seed = 1974;

}
entity = CreateEntity {

EntityType = FFNN;

NumInputs = 500;

EntityClass = 1;

MinNumInputs = 12;

MaxNumInputs = 35;

Sigmoid = No;

ConfFile = Conf C1;

Weights = W C1;

C1 = 22;

C2 = 4;

Seed = 1975;
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}
TrainEntity {

Obj = entity;

InpFileObj = train data;

Iters = 1000;

Beta = 0.095;

Lamda = 0;

Hosts = altair, zeta, spica, vega;

}
SendInformation {

OutFileName = Message;

Message = TITLE: the results of C1 entity testing

Obj = train data,entity;

}
$

This is an npnp script which may be used to test an entity trained with the previous

script.

# Author: A.Hadjiprocopis

test data = ProduceAndFormatVectoredDataSet {
Y = Levy6;

NumInputs = 500;

NumOutputs = 1;

NumLines = 5;

Seed = 1976;

}
entity = CreateEntity {

EntityType = FFNN;

NumInputs = 500;

EntityClass = 1;

MinNumInputs = 12;

MaxNumInputs = 35;

Sigmoid = No;

ConfFile = Conf C1;

Weights = W C1;

C1 = 22;

C2 = 4;

Seed = 1975;

}
TestEntity {

Obj = entity;

InpFileObj = test data;
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OutFileName = final;

}
input = ExtractColumnsFromObject {

Columns = test data[1..LAST EXCEPT LAST];

}
expected output = ExtractColumnsFromObject {

Columns = test data[LAST];

}
actual output = OpenFileObject {

Filename = final;

}
error = ColumnsArithmetic {

# mean square error estimate

RowExpr = 0.5 * ((actual output[1] - expected output[1]) ** 2);

ColExpr = average;

OutFileName = error;

}
$

The following script will train a single ffnn.

train data = ProduceAndFormatVectoredDataSet {
Y = Levy6;

NumInputs = 100;

NumOutputs = 1;

NumLines = 70;

Seed = 1974;

}
single = CreateSingle {

SingleType = FFNN;

Arch = 100 49 1;

Weights = W SINGLE;

Sigmoid = No;

}
TrainSingle {

Obj = single;

InpFileObj = train data;

Iters = 1000;

Beta = 0.095;

Lamda = 0;

}
SendInformation {

OutFileName = Message;
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Message = Results of testing a single FFNN;

Obj = train data,single;

}
$

Finally, the following npnp script may be used in testing a single ffnn which was trained

with the previous script.

test data = ProduceAndFormatVectoredDataSet {
Y = Levy6;

NumInputs = 100;

NumOutputs = 1;

NumLines = 2000;

Seed = 1976;

}
single = CreateSingle {

SingleType = FFNN;

Arch = 100 49 1;

Weights = W SINGLE;

Sigmoid = No;

}
input = ExtractColumnsFromObject {

Columns = test data[1..LAST EXCEPT LAST];

}
TestSingle {

Obj = single;

InpFileObj = input;

OutFileName = final;

}
expected output = ExtractColumnsFromObject {

Columns = test data[LAST];

}
actual output = OpenFileObject {

Filename = final;

}
error = ColumnsArithmetic {

RowExpr = 0.5 * ((actual output[1] - expected output[1]) ** 2);

ColExpr = average;

OutFileName = error;

}
$
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[Šima, 1994] Šima, J. (1994). Loading deep networks is hard. Neural Computation,

6:842–850.
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